
PiA ALLLISP U AIR FORCE INST OF TECH NRIGNT-PRTTERSOI
AFB OH SCHOOL OF ENGINEERING W A HARDING DEC 89

LASSIFIED AFIT/GCS/ENG/89D-6 F,'G 12/7 U



I11111_L8

11111 .25 11111, _L___A 16



71 C LILL ?

(N

N

DTICELECTE I

~OF Scq D
tlypercube Expert System Shell -

Applying Production Parallelism

THESIS

William Arthur Harding

Captain, USAF

AFi'/GCS/ENG/89D-6

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

I AIR FORCE INSTITUTE OF TECHNOLOGY

I Wright-Patterson Air Force Base, Ohio

,AwA k--"- -I 89 12 26 147



I
AFI T / CS / E.NG/89 D-6

5 l lypercule Expert System Shell - Applying Production lParallil sill

I

I TIESIS

I Presented to the i-acuity of the School of Engineering

3 of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

I Master of Science in Computer Engineering

I

I William Arthur Harding, B.A.

Captain, USAF

A
I
I A pproved for public release: (list ri bution u nlimited

I
I



Pr(fa(c(

'his study was prompted by the need for expert system soflwar, to prowtU(c ro .lirid

I results in real-time for svsteis like the Robotic Air Vehiclo. 'he expert sYstm processirig

speedups realized on serial machines due to state-saving match algorith is like et e are

inpressi ye. but tlhey still fall short of real-time processing. This research i vct1iationi

fwcuses on parallel processing of such state-saviig algorithiins withi the g al ,f a;Civici'

real-tinie expert system processiring.

I % illliti A\rlt lar Ii;:Arli, ,

U
I
!
I
!

AcoesBl on ror

DTIC TAB l

II
J"t'. G IAOe~e
B -

I _

AvailittAIty CodesAVnil and/or
Mt Specte 1 .



A ckn owulqn dyII 11,

This work would not have beeni possible without the support of my wife, Cairol. I

3 thank mv thesis, advisor. D)r. Gary Laiomit. for his insight and direction. I am grateful

o Captain Donald Shaklev and Lieutenant Jesse Fanning for providing the background

jufornmation from whtich I couldi proceed with my research. I ami also en(pieted to mnianly

AFITl classniates, especially Captain It Androvw Beard, Captain Mark flmisoni. ('apt aml

3 \William Koch, andl Captain Michael Proicou, for their guidanc- andl supplort at koly j)( 2il

(luring this research investigation.

I I lovi ugly dedicate this effort to my daughter, Eri n M arie.

Wi lliamn Art hur llardmnl-f



3 7" abl of Conlcn,s

Page

IP re fa ce . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... i

I A cknow ledgiim ents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..ii

Table of C ontents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of F igures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

\ bst ract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

I. In ro d uction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

3 1.1 System Requirement ....... ....................... . 1-1

1.2 Related Vok .. ........................... 1-2

1.3 Problem Statement ......... ........................ 1-2

1.4 Research Objectives ........ ....................... 1-3

1.5 Scope ....... ............................... ....... 1-3

1.6 Constraints .......... ............................ 1-4

1.7 Summary. . .......... ............................ 1-I

I L Background .............................................. 2-1

3 2.1 Production System ........ ........................ 2-1

2.2 Expert System .......... .......................... 2-4

2.3 Speedup and Parallel Processing ....... ................ 2-5

2.4 Communication Overhead ........ .................... 2-6

1 2.5 Load Imbalance ............ ........................ 2-8

2.6 Summary ....................................... 2-8

ivI



3 1Page

Il.Prod uction Svstemi Pe rformance Improvement Concepts . ...... 3-1

33.1 Pot enial Prod uction Systemi Parallel isil .in .... 3-1

3.2 ilete Match Algorithm .. .. .. .. .. ... .... ... ...... 3-2

3.3 Parallelizing Rete.. .. .. .. .. .. .... .... ... ...... 3-8

3.1 SumIImIIarl\.. .. .. .. .. .. .. . . .. . . .. . . .. ....... 3- 10(

I . Research IMet h1odjologx..................... . .......... . . ... . .. 4.1

4. 11 luistificat ion of Met hod Sclected .. .. .. .. .. . . . . . .. ..... 1

41.2 Performance Spe)(ctrumll.. .. .. .. .. ... ... .... ......- 1-2

4.3 Research Investigat ion Steps. .. .. .. .. . .. . . .. . ..... 4-51-4.4 Statistical Proced ures.. .. .. .. .. .. .. . . .. . . ........ 4- 6

,1.5 Suimmary..... .. .. .. .. .. .. .. .. .. .. .. ..........-

I . Step 1: Lower Bound Performance. .. .. .. .. ... .... .... ..... 5- 1

5.1 System Design .. .. .. .. .. .... .... .... ... ..... 5-1

5.2 D~etailed D)esign .. .. .. .. .. .. . .. . . .. . . .. . ...... 5-2

3-5. 3 Implem-nt ati~ o. .. .. .. .. .. ... .... .... ......... 5- 2

5.1 Su in mar . .. .. .. .. ... .... ... .... .... ...... 5-4

V1. Step 2: Upper Bou. :id Perfornman ce. .. .. .. .. ... ... .... ...... 6-1

3 6.1 Sstemn Design .. .. .. .. ... ... .... .... ... ..... 6-1

6. 2 Detailed Design. .. .. .. .. .. ... .... .... ... ..... 6-1

3. 63 Implementation .. .. .. .. .. ... ... .... .... ...... 6-2

6.41 Summary. .. .. .. .. .. .. .... ... .... .... ...... 6-4

V11. Step I: Cu rr-ct Best Performance. .. .. .. .. . .. . . .. . .. . ..... 7-1

37.1 Syst em Design .. .. .. .. .. .... .... .... ... ..... 7-1

7.2 Detailed Design .. .. .. .. .. .. .... ....... ...... 7-1

57.3 Implf-ment;4ion .. .. .. .. .. ... ... .... .... ...... 7-4

Uv



3 Pago
1'II1, Step 4: P~arallel Rete, P~erformance 8-1..

S .1 -SNst emi Design.... .. .. .. .. .. .. .. .. .. .. . . . . ......

8.2 Detailed Design . -1

8.3 Imiplementationi ......... 8-4

SA.- Sumnmarx 8-7

IX. Step 5: Performance Comparison Findings . ............... 9-1

X. Concl usions and Recommendations ............... .... 10- 1

310.1 Research Conclusions . ......... I........... 10- 1

10.2 Ic-qiarrch ReconhrnondatiD ions .... .... . 10- 1

310.3 Summrar.y .............. . 10-2

3 .ppoiidix A. Rohotic Air Vehicle Backgroud . .. .. .. .. .. .. . ...... A-1

Appendix BI. Parallel Processing A rchitectures .. .. .. .. .............- i1

Apppndix (C. Timing Analysis of RZAX Expert System. .. .. .. .. ....... C- I

.\ppfondix D. Parallel RAV Expert System Program... .. .. .. .. . ..... -

I.XppendixLE. HyTperCLJPS Programmier's Manual .. .. .. .. .. .. . ......- I

E. LI General Overviewk.. .. .. .. .. .. .. ... . ... . ........ E-i

E.2 Hvper-CLIPS Initialization-----------------------------------. . E-1

3E3 HyperCLIPS Basic Cyvcle of Execution.. .. .. .. .. .. ......- I

EA4 Detailed Design. .. .. .. .. .. .. ... . ... . .. . ...... E-2

E. E7 Embedding lIvperC.'IlPS .. .. .. .. .. ... . .. . ........ E-3

3Appendix F. IvyperCLllPS Users' Manual. .. .. .. .. .. . ... . ...... F-I

F. I HyperCLIIPS Overviewk... .. .. .. .. .. .. .. . ... . ..... F-1

3F.2 Requirements for Running IlyperCLIPS. .. .. .. .. .. ..... F-1

I vi



I

5 Page

F.3 Interface t, HIvperCIIIPS .................... F-2

I F.A lvperCLIPS Liniit,,ti,,is .. ..... ... ... ...... . F-5

t ita .......................................... VTA- I

3 HiblingraphY . .1.1.1.1.1.. . . . . . . .. . ... 1

I
I
!
i
a
U
I
I
I
I
I
I
I I

I



3 ist of Ji u r(,

Figure Page

2 2.1. i-roduction Sv st-ni Algorithm .. . ... . ... . .... ... ...... 2-4

2.2. Expert System Componients .. .. .. .. ... .. . ... . .... ...... 2-7

2.3. Exam iel( Parallel S peed up C hart .. .. .. .. .. .. . .. . . .. . ...... 2 7

13. 1 . NIat cli-Select -Act Flow G rap1'.. .. .. .. .. . .. . . .. . . .. . ..... 3- 1

3. 2. Sample Rete Graph. .. .. .. .. ... .. . ... . .... .... ....... 3-3

3.3. P roduiction Parallelism. .. .. .. .. .. . . .. . . .. . .. . . .........- 9

1 1. 1. Example Performance Spectrum Chart .. .. .. .. ... .. . ........- I- I

3.1. RI AV Serial Rete Design .. .. .. .. .. .. ... . .... .... .........- 3

.1. RAV iPSC/1 Illpercube Design1. .. .. .. .. ... .... .. . ........ 7-3

7.2. iI'SC/ 1 H AV Performiance Results. .. .. .. .. .. .... .... ...... 7-4

38.1. RAV IlYpercube Rete Design. .. .. .. .. .. .... .. . ... . ....

9. 1. RAV Expert System Perforinance Spectrum. .. .. .. .. .... ...... 9-2

Al- . HAV Svstem A-rchitecture. .. .. .. .. .. ... .. . ... . . . . . ...

A.2. IAV S ystemn Configuration. .. .. .. .. .. .... .. . ... . . . ..... A-3

11.I. 2-1) Mesh Network .. .. .. .. .. . .... .... .. . ... . ........ B-2

13-2. Size 16 Pyramid Network .. .. .. .. .... .... .. . ... . ...... 11-3

13.3. 8-Node Shtufflev-Exchange, Network .. .. .. .. .. .. . ... . ......... B-3

3 B.4. 32-Node ButterflY Network .. .. .. .. .. .. .. .... ... ... . ..... 11-41

B. 5. 4-D Hlvpfrcube Network. .. .. .. .. .. ... ... ... . ... . ...... 11-41

B B6. Summary of Architectures. .. .. .. .. .. . ... . .... .... ..... 11-6i

viii



3 'il~his research irivestigation propose> it hypercuihe (lesi~m t hrdware 114 t ware

which supports efficient s . . boli c compurtinrg 1o permit real-tI ie ci ii!ril ,f aIll a;i hki_

3 ~ ~le hy art expert svsteni. ReJ-ttime proce siitg reqtttrelills ritotivate the, re;i: to

alleviate Conillton expert s-tl bottilnecks. Fxarttple>, of tillst bot illl(k- jIlli' Ille

3iliefliciencNv of symlbolic programmnhrg languages, like Li-,p and the dispro)po)rioniiith alliIlit

of Wfltnhitattort time conlititlv speI lln thte rIllia of tw he\jI. expT p sv 1~l i ii

select -act cvcle.

InI the design presented i thils, reseairch investigation, faster pir(4c,,s ilt o ftI le l,-f-,;,I A (1 Avantcedh Re(search Projects A.gencyv ( I DARiPA ) Rlobo tic Air Vei i clv (I .\\ exp~ert s 1

3 >Software is, approached tltroughi 1) fast productliont matching" using all e'xpert systeiti lawll

wh Iichi emploYs Rete., a state-saving match algorithim, 2) miore efficwiert expert systemr shewll

program extcu t on dlue to Implement at ion usinrg tile C-Program ili ng lanigir agfe a nIlt :J)

I ~ ~~parallel processinrg of thle H A\ expert s stem produtct iont c cle using mnul tiple copies of IIw

3 seri~al expert svst em shell. For Otils design. thle seriatl C- Laigi age( lit egrat ml Prmil 101i

'S"vstvmi (CL.IPS ) shell. which uses the Rete matcht algorithmir. is urodil vd it) ('X4cilt4 I

piarallel onl the, i S('/2 lly-percube. .Aliougli tite LiAX expert systemr Is, tlt4 appliritGl ; iaU ~ ~Iterest In this Invest igationi, the( parallel expiert systemr shell is (a4abi1 of ; ssiall.

3 (LIPS-synltax software.

Speedups achieved using this architecture are (juraitified throughi tlieor t (lcl tilillgo

anlyl ,an cornparison wit h serial arch it ectunre performa nce results,, wi th earlier parallel

archiitectures performance results, wit i best case tI toret ical analysis perforrniaice result,3 ~ ~ad withi thle "real-ti me" goal performance. This performance quianit ification aprui i

nt roduices tie( concept of a performance spectrum which exposes thle level ()f l~itri t nil f

3 IIAV expert system processing in particular and tire level of maturity of pll el ex Ilrt

system shell processing on a niulticomputer in general.

ix



3 ~ ~~Hperctihie Fxjrt Syst ei ii ell - A pplyinrg P~rodu ct ion Parallel isinl

I. I1trodutilorl

I The fvaolhli1T v of inp]rovi ng the performnice of prod uction sv'stei Software ( par-

en] an v . expert s te Pwreruning on a parallel architecture is anl area of cuirrent

n t erv t li art ifi cia]eli ~i rearch. One sponsor of research in thlis area. thle Alii Force

\Vriglit .- eronautic;il L.;il ratories ( AFW.-LI), reamjres a fast multiprocessor architec ture

to ]ir,)cv-es ant expert ( -2 i ahi~l of piloting a robotic air vehicle ( RA\ ) (25 :1326i . The

~rat#,eI c hwIilt )ee e n a 0rEgti ization C SI1) is anot her sponsor of faster ex pert svs-

liiipni -<-~ng r~ear ii ii i rese~arch ',ivest igatiori is performed in support of the RAX'

'x ~rt'v te nprojoci ;ii 1 a followk-on to the investigation by Captain D~onald Shaklev

.7.Some of Owe arfe;, rinumiietided fo' future research in ShakleN's thesis are prue.

3 lie coi,. cept of tie RiA\ project is to create an un nian ned air vehicle capable of

aultonlonious operation( e Appendix A). To develop this robotic capability, AFWAI.

u in tract ed Texivs Intr1ten Ic. to prod uce RAV software which, wkhen executed. could

p;-forn all oif the 1jasic pil1Oting sklls as welas various navigation and obstacle avoidance

3 fu net ois 12':1I32G) Al A\L. and] TI Jointly chose an expert system as the preferred I{AV

,4ft war'' ilein~~~t ti met hod for several reasons.

3 I~~i rst and foreino l AFA L un covered t h ough literatutre reviews that efforts to ap-

plY traditional soft ware inienentation methods to intelligent vehicle control had failed

3 ~die in part to u anioIr!tof code, (37:77). Second. researchers increasinlglY are dis-

covering that applicatitii that himian,, currentlly do better than machines (like the task of

3 piloting an aircraft ) lendl t wituselves to solution using an artificial intelligence approach.

Because expert syst ett ti Ii tmo utig is ciirre nt l one of the most successfi, branches of art i-

3 E~fcial intelligence. AFIWALI and] "II chose the expert system appioach t(o the( I{AV soft ware

corisT riict ion (~.



Unfortuniatc!. v. t1., 1P AVexpert ' vstem sI-)oe ob compute-intensivet

3 ~ ~ield results in r':I-t 'anvserial or paralio1 compuI~ter a rchit ect ure (hardware and

software) developed 1;t Real-timre mneans "the time nleeded to make a calculation has

to he less than the( irne firum wheni the need for the calculation is recognized unt il the time

kwen the, reSPOTI se is Iltid d to take actiton" (31:10). The R.XV con cept is ,,o; feasible until

a (orn jt t en archttur, tlil produices real-time results p.,ocessinrg the ItAV expert system

Cm b" h dove'loped.

I *1 "I h tt (IIv par~~ ;ra hfll t ct ures applied to the RA\ expert sys tern were develope-d

1'- shiklev 1 371 1le 111( oh(1' paralle'l I)roceSSing designs implemented on a network of

1(,vt lri-,truiwwe- II -1'Ix Llisp machines and on a first generation Intel P~ersonal

> I Ipec toitr (ji ) S(. A! 1 oI Ih ItIsI , st udy shIowed thItat thIte i nc reased pa ral1,l i sr of t Ie(

col Jr11' 'Slc process iig speedutp cornpared to theT'I Explorer design,

hanliollit ofwas hiampor-'d by the effects of interprocessor cominrmri-

(at liln ove~rlead aid lt,;d liiihulaitce. These effects were caused mainly by the simnpleat

decom lpos"it icm n) phd t:i tie( iPlS( (design (37:72). Furthermore, comupari ng the i PSC

de*'Igii to the '1I Explorer- I. >itqn niaY have allowed factors unique to each of these products

to)se the analv is 1 -. the( (ifference in the observed processing speeds of the two

~v~tin~may avere,,'tltd froti: factors othter than just the difference in the number of

3 .1 Irohl( Trn .901711 1/It

'I It, goal of t t r,,t rcli in ce'(Stigat ion is the design, implei.ientation, and analysis

3 (i~f a parallel pro(-,.tn ii t'c ir nuplveeited on a second generation Intel Pe-sonal

Stiperonipiter ( i th'('2 1Ile quait ification. of the processing speedIup realized by t nis

3 de1sign as applied to tie IlAV ('xlwi't slystem.

I 1-2



]Its Jia rh ( bjt tti c

I The followIAig are 11 c i bjectlive,'s of this research:

*implement all (,fl' illt and effective parallel RAN' expert system architecture onl

the, if".-(/2 coitihgur'd to Ilse varying nambers of processors to gather data on the(

3 spevd(1lle realizabhle 1 liruqhl parallelizatiun

qiiant ifv tie( perf)rm;ince resuilts for this parallel RAN' design through theoretical

I ~ ~order-of tirnilig aal , i andi through comparisons with past research results, with

serial architect ire t.>l ,with best-case theoretical analysis results. arid with the

I real. tirne gic el wriarice

The jlitel Per> 'i a Su percomnput er (i PSC/2 ) is the multicompu ter employed in t hiisI rf, earch inivest igatiioli e Appendix Bj. This supercomputer, which can be con~figured

wit hi up to 12X~ available processors, is chosen due to availability as well as to research

i ut eret tiit 1iw 1wrfuirtii i of artificial intelligence application software executing on a

rriilt iconipilter. Liriti t liw analysis to designs implemented on this one supercomnputerIeliminlrates t he poss'ibIlity of riachi ne- unique factors skewing the results, thus yielding miore

3 (1 ialitifiahile coin pari~oi. of tie( performance differences between designs.

Soft ware, codinv, done ()it(n the C Programming Language. C was chosen over the(

3~m 'taor AI prograniniig, languages, Lisp and PROLOG, to facilitate better efficiency and

port ablity, (27:190t). C i> adso the( only one of these languages available for use on the

Al]' ihS(/2 at the( tirl(f this research inetgto.Shakley's parallel RAV design,

however, was iniplerliieiied not in C but in Lisp on the iPSC. Shakley's design is not3 reirliplfmverted iii C as pa~rt of thiis research investigation, because the potential execution

sp('q'(h1ps attainable thliroigh reimplementation in C on the iPSC/2 are derived much more3 easily using theoretical anialysis.

Because the R XV e xhort systein is the application of interest, it is the only application

3 to which resparch dhIiwiu ar', anplied for Performance comparison purpose-,. Pertinent

U 1-3



R A\ comput atinIi i ;L t a quirei fromi and( assumied validlated by A FVALI RAX' project

managers.

1.6 Constrairtb,

She (lecisioii to( ili , I Itc, iS('/2 to( iminplenient an U AV parallel expert syst em (1ri%'I

nilanv' program c igtii Sn. Certain feature s of iPSC/2 hardware configuration. such

a, a local memory for each~i processor node. exclude many program dlesign opt ions. 1For

I exaMlple. algorithins t lilt! pirfrrm relati vely few operations between svnchronizat ions (i.e.,

ha ve a small grain size) 11.rrallY exhihit poor effiiciency on mult iconpulters that employ

I niuiriple local meniorle- t (:r>il the Il)S('/2 (3-4:.53). Consequently, small grain algyorithmls

ar, xi e from (711idi(iI rat oil iin this st udv. In fact, the i PSC/2's mili icom puter d esign

U prevent-, this research i'est gation from taking advantage of extensive production systemi

rSearch performed t) uktv usi iigf shared-imemiory mul t Iprocessors (14:63).

I ~Tt I ieUAX expert s vst emi is the application of interest to this research investigation.

Althloiugh the research nitliiudulogv and design factors are applicable to atty parallel archi-

U lectlire research. the pirfi rulaice resuflk> reali/ed are unique to the RAV expert systemi

I'liat is to say, even t lmdl thle form of t he ItAV expert systemn is not unplike that of an\,

ot her expert svstein pro-rurim. the application of the architecture implemented in this inv1Ves-

t m.atimi to other expert sYstems will riot necessarily produce the same performance effects.

' lii fact Is significant wlemi analyzing the expert system shell execution speeds observed

f()r il application arnd %Oremi usinrg t liese execution speed analysis metrics to quantify the

merit of the expert systr hll.

I1.7 7nmr

3 This research ii v-t grit ion add~re~ses improving the performance of production sys-

tcin software by execuitig( this softv~are on a parallel architecture. Such an architecture is

3 applied to the Robotic Air \elricle (RIAV) expert system. The parallel expert system archi-

te cture is implemnemte,]il Ow h il)SC'/2 sliprcomputer using the C programming language.

3 Realization and quiant i firatf i of perfor-mance speedups using this parall I architect ure are

hrw ohijecti yes of thisinetali.



I
I

Chapter I prmlvdi,,, background information on the key topics underlying this re-

search effort, inclilmr- i-,xpri systenis and parallel processing. Chapter III describes the

Rete match algorithm iii , isues regarding parallelization of Rete. Chapter IV details

Hie fundamental appri( Li to this research and introduces performance quantification us-

in I a performance sCt ruin. Ii Chapters V and VI, the lower and upper performance

Ihouiids of processing III( l AV software are derived. Capt Shakley's parallel RAV design

and its performance a,, related in Chapter VII. The parallel Rete expert system shell

design and its application to the RAV expert system are presented in Chapter VIII. The

many performance metrics produced in Chapters V through VIII are compared using the

performance spectrum nolhod in Chapter IX. Finally, the research conclusions and some

reconiendations stenmiinii from research findings are offered in Chapter X. Appendices

are available for tho,,e soeki ng deeper insight into the RAV project itself (Appendix A),

parallel architectures (..\piidix 13). the theoretical and actual realizations of the parallelIRele expert system shtll (.Appendix C and Appendix D, respectively), and programmers'

and users' manuals for t,, export system shell (Appendix E and Appendix F, respectively).

I
U
I
I
I
I
I
I

1-.5

I



I
!

II. Background

This chapter sunmirizes some of the underlying concepts, uncovered through titer-

ature search, that form the basis of this research, including production systems, expert

systems, parallel processi,_,. communication overhead, and load imbalance.I
2. I P.-oduction S , t III

I A production sy.st( ? is a pattern recognition formalism based on string replacement

rules. An order is imposed on these rules to decide which applicable rule to apply next.

Production system computation proceeds as a string-resolution-based search. A control

strategy is used with tring-modifying production rules to model certain types of human

problem-solving behavior (30:4R).

The major elements of a production system are a global database of facts, a set of

production rulcs, and a control systcm.

A fact is an assertion which represents a specific item of knowledge. A fact is generally

of the following abstract form (14:8):I
(< objcct >< attribut(1 >< walucl >< attributc2 >< valuc2 > ...

Written in this form, a fact is a parenthesized list consisting of a constant symbol,

commonly called the objct, and zero or more attribute-value pairs. An object represents

an entity within a problem's domain that is of significance to the solution of that problem.

An attribute represents a specific characteristic of its associated object. A value is the

parameter instantiated for a given attribute (36:75).

U The global database of facts, also called working memory (WM), is the central data

structure used by a production system. Because facts are held in working memory. the

facts are often referred to as working memory elements (WME). At the start of production

system computation. WM contains a set of initial facts about the problem domain. As

production system con mutation proceeds, facts are added and/or deleted from WM.

3 2-1

I



I
I

A production ruh i ,,xpressed as strings that represent general knowledge about a

particular subject area. A production rulh generally appears in th,, formp of an "IF condition

THEN action" implication. B,, convention, the condition part of a rule is called the Left

3 Hand Side (LHS) and the action part of a rule is called the Right Hand Side (RIIS). The

LIIS is consists of one or more condition elements (CEs) that are compared to the actual

3 state of referenced facts in \VM at a given point in computation. The RIIS consists of an

unconditional sequence of actions which can add facts to and/or delete facts from V'M.

3 The following is a sample production rule (14:12):

(rulc sample •

I if ((obj ct2 attributel 1.5 attribute2 Y)

(o1tjctN attributel y)

II7
i (add object3 attributel 12))

This production rule, named 'sample", consists of two condition elements in its LIIS

and one action, an add to WM, in its RHS. Note that this production rule form can be

generalized in the following first-order predicate calculus form:

if ((P'1(x 1 ,X2)) +

(P 3((xI ,X3))

In this example, both predicate P and predicate P2 must be true for predicate P3

to be true.

The production rules, known as the production memory (PM), are matched against

the global database of facts. All rules in PM can match against and alter any facts in WNM.

The LHS of each rule in PM is either satisfied or is not satisfied by one or more facts in

the global database in WM at any given discrete step in production system computation.

If a rule's LHS is satisfied, that rule may be applied. Application, or firing, of a rule adds

facts to and/or deletes facts from WIM a.s dictated by that rule's RHS.

I 2-2

I



I
I

For example, tIm h)roduci(on rule -sample" shown above is satisfied when there exists

one or more facts in 'VNI that meet all of the following conditions: i) the fact's object

matches object2, ii) the fact's current value y for attributI is "15" and iii) the fact's

current value y for atttlbalf 2 is the same as the current value y saved for attributcl in some

other fact whose object nilat ches objt4. If all three of the above conditions exist in WM,

the --sample" rule is then eligible to fire. adding a new fact with object object3 and value

12" for attributcI to W\M.

It is possible dhiring production system computation that more than one rule's LHS

is satisfied by the state of the facts in WM. The list of satisfied production rules in PM

i, conimonlv called the conflict sO. The control systen chooses which among all of the

satisfied rules is to be apl)!ied. The choice of which rule to fire may be based on some

firig priority assigned to each rule, on some characteristic of the rule string itself, or on

some arbitrary ordering. Th, control system may employ an irrvocablk control strategyIor a t(rnatir control stra egy. In an irrevocable strategy, a satisfied rule is selected and

applied without provision for reconsideration later. In a tentative strategy, a satisfied

rule is selected and apllied, but with provision made to return later to that point in

the computation to apply some other satisfied rule instead. The control system halts

coniputation when a predefined termination condition, or goal condition, exists in the

current contents of WM (30:18).

The basic production system algorithm is illustrated in Figure 2.1. This algorithm

is executed as a Match-Select-Act cycle. usually in the following order (11:36):

1. Match - evaluate the LIISs of tho production rules to determine which are satisfied

given the current contents of WM

2. Select - choose ,,'i proluction rule with a satisfied LIIS from the conflict set; if no

production rules i;ivo satisfied LIISs, return control to the user

i 3. Act - perform the actions specified in the RIIS of the selected production rule

4. If a termination cotdit ion is detected, then return control to the user; otherwise go

to Step I (Ma1hj

2-3I



I
I

Procedure PROIVl) CTION

1. I)ATA - iitial fact database

2. ut i] )AT.A satisnes the termination condition, do;

,,,Iect sonie rule R in the set of rules

that can be applied to DATA

)AT.A - result of applying R to DATA

3. end

I Figure 2.1. Production System Algorithm (30:21)

2.2 FLxpIrt Syst7

One class of produiction systems is that of expert systems. Expert systems are formal

computing systems, or programs, that use the production system paradigm to offer advice

or solve prcblems by reasoning with bodies of knowledge highly specific to a particular

domain (.1:105). The bodies of knowledge are generally extracted from human experts

in the domain. Using this knowledge base, the expert system attempts to emulate the

I ext)erts" methodology and performance toward solving a problem (27:291).

Knowledge engineering is the interdisciplinary Al field concerned with the extraction

of knowledge from domain experts and the transfer of this knowledge into hardware and

software , ipreeiitatio. After the knowledge engineer has developed the basic expert

system, the acquired expertise is refined through a process of giving the system example

problems to solve. Domain experts criticize the system's behavior and make any required

changes or modifications to its knowledge. This process is repeated until the system has

achieved the desired level of performance (27.16). Because the knowledge engineering task

is difficult and expensive, expert systems typically emulate problem solving over a very

limited domain.

The principal components of a rule-based expert system are a knowledgc base, an in-

U 2-4

I



frrnce engine, arid] a mai-oruachrin( int, rfarv (see Figure 2.2). The knowledge ba-se contains

U the global databas.e o)f faict , and the production rules that embody, an expert's expertise.

The inference engine is t he control systerr that serves as a reasoning mechanism and search

I controller. It is ie( irifereiice enginle that performs the match-select-act cycle. These two

exetsystem- components represent, the major elements present in any production sys-

I ~temn. The mian-nmaclim inu irterface si mply produces dialog (string, graphics. etc.) between

I lie computer and I t(e user ( IS:>s- 13).

IVser K ~I I ) Ifd~' Explanatiori--- Inference Output

Dat
Fi,ro 2.2. Epert System Components ( 18)

1 2.3- .Sx (drp mid Pan ral/i I IProc~ssing

Compute-inteliive alilijcatiolis. such as the RAV expert system (28), require pro.

cessing beyond the perforinance ability of conventional, single- processor machines. Ishida

and Stolfo suggest that although speed improvements in si ngle- processor machines have

occurred, "further speed Improverments are required for very large [expert] systems with3 se~vere tine constraints." (23:568) Parallel processing, which means applying several pro-

cessors to run tihe solution algorithm for a single problem, is one approach to achieving

such speed improvenimits.

The degree, to which parallel processing improves proce-ssing speed depends upon the

efficient use of a-vailable prcsos Two inain obstacles to achieving peak performance

using parallel processing(, aire rorniication ovcrlread and load imbalance (37:72). One key

2-5



I
I

to overcoming both ot,.tacles is the proper choice of a problem decomposition approach.

5 A decomposition algorithm divides the overall expert system into independent subunits,

or tasks, each of which is assigned to one of the available processors for execution.i
2.4 Communication O)'(rhtid

I Communication, or the passing of required information between processors, seriously

degrades expert system performance because the overhead can become so intense that "the

[processors] spend more of their time communicating than computing." (6:72) Obviously,

chosing the most current technology parallel processor that performs interprocessor com-

munication as fast as possible is one way of reducing communication time. An algorithmic

approach to reducing the detrimental effects of communication overhead is to decompose

and distribute the expert system tasks in such a way that the interprocessor communica-

tion time incurred by p;rallelizing the expert system is less than the computation time

saved through parallelizat ion of the expert system. The benefits of a "good" expert system

decomposition are realized regardless of the particular parallel processor's communication

speed. But an extremely fast interprocessor communication capability calinot be expected

to always overcome the effects of a poor decomposition.

I he number of processors over which an expert system's tasks are decomposed also

affects communication overhead. A phenomenon called the Amdahl effect dictates that any

parallel algorithm shows constrained speedup if there is not enough work to be done by the

number of processors available (34:60). The Amdahl effect suggests there exists an optimal

number of processors upon which a parallel program can be run. Applying more than this

I optimal number of processors adds communication overhead that overcomes some of the

computation time savings of parallelizing the system. Figure 2.3 shows how processing can

slow down when more than the optimal number of processors are applied to a problem.

Proponents of parallel processing hasten to point out that Amdahl's effect occurs under

I the assumption that some nmniber of necessarily sequential operations exist to interrupt

the parallel execution of an algo)rithm. Hence, Amdahl's argument serves as a way of

5 determining whether an algorithm is a good candidate for parallelization, rather than as

a provable limit to speedup for all algorithms (34:19).

I 2-6

I



Ircsin pe
Inuiso neet

1I

Frcsiigur 23.E xa pePrallSeeu hr

(in uits f it re-t



I
U

2,5 Load Imbahm,

I An imbalance of the task load aniong the processors also severely degrades perfor-

mance. The goal is to vn I-ure that -the tasks being executed [are] uniformly distributed

amongst the various proce>.ing nodes in a manner which maximizes resource utilization to

enhance the total throughput of the system." (2:18)) Achieving load balance, like achiev-

ing low communication overhead, also depends on choosing a good problem decomposition.

A good decompositi i algorithini maps the expert system tasks to the available processors

in such a way as to k(,'i , as many of the processors busy doing useful work ac possible.

'lhere are two giral tnsk allocation policies: static decomposition and dynamic

dcomposition. Static decomposition assumes that tasks and their precedence relations

ar, known before ex ecutili. 1)vnamic decomposition assumes that tasks are generated

during program Oxeculit. T'lie advantage of static decomposition is that it allows the

) prallocation of tasks t4) processors, thus reducing the amount of interprocessor commu-Inicatio, The advaita-,g of dynamic decomposition is that it makes it easier to keep all

the Processors busy bhcause tasks requiring processing are assigned to the first available

processor (34:62). But dynamic decomposition adds communication overhead to distribute

tasks to availabl processors.

2.6 Summary

A prodiictiou sy>! ii coriists of a global database of facts and a set of production

3 rul(,s (constituting tlie knowlede base), and a control system (inference engine). The basic

production system ex,,clitlol algorithrn is the Match-Select-Act cycle. The rule LHSs are

matched against the current facts in the knowledge database, one of the satisfied rules is

sel,cted for firing, and the ?IIS actions of the selected rule are performed to update the fact

database. An expert systmn applies the production system paradigm to problem solving

using knowledge that is specific to a particular domain. Parallel processing, which means

3 applying several procssors to the solution of a single problem, is employed to speed up

processing of a wide, rango of applications, including expert systems. Two main obstacles to

realizing speedup through parallelization are communication overhead and load imbalance.

U 2-8

U



I
I

III. Product So,4 .in Performance Improv mcnt Concepts

This chapter offers sorne production system parallelism concepts and introduces the

serial Rete match algorithm. The pafallelization of the Rete algorithm lays the groundwork

for a new distributed processor parallel RAV expert system design.I
3. 1 Potential Prodlutw ,,h 5 .tein Itarallclism

I As discussed in Chapter II, the three steps that are repeatedly performed to exe-

cute a production svst,,m algorithm are match, sclect, and act. Figure 3.1 illustrates the

information flow amoiig these three steps. Note that a synchronization point exists af-

ter the select step and before the subsequent act step. This synchronization point has

a serializing effect on tlie mat chi-select-act cycle. The select step must finish completely

before the next produclim rule to fire can be determined and its RIIS evaluated. Without

this synchronization. a pot ential race condition exists in which the WM change inputs

to a match-select-at cycle may be corrupted by outputs of that same cycle. No other

mandatory svnchronizat int points exist in the cycle.

I

I
Mac Actec

lig ue 3.1. Match-Select-Act Flow Graph (14:46)I
This feature, of production system-is suggests areas of potential parallelism. For ex-

ample, it is possibl, to use parallelism within the match step, within the select step, and

within the act step. It is further possible to overlap the processing performed within the

I 3-1

I



I

match step and the select step of the same cycle and the processing performed within the

3 act step of one cycle ad the match step of the next cycle (14:45). These potential inter-

step overlaps are repr,.eited by the queue symbols in Figure 3.1. But as noted above, it is

not possible to overlap the processing within the select step of one cycle and the subsequent

act step.U
.2Rc t Match .1Iuiltu

I All of the inform!,,n preseinted in this section is taken from (15) except items noted

frmtll other source>.

The most tinie (W,1n , step in the execution of production systems is the match.

Matching is a palnr r ,,wgnition activity which involves matching the left hand sides

il ltS>) of all productimih againist all facts in working memory (WM). Even with special-3 i/,d algorithm>. ti, liatch lIop constitutes around 90/( of the interpretation time (13:4).

Corti 1rtetlv. sp thp match step in production systems is an arta of intense

re~veirch.

'he pte ( !pr i. 'd, , ret") algorithm is among the most efficient algorithms for

Smuat cli ,et d(ev,,lopd. 1,, ,achieve this efficiency, Rete exploits two features common to most

production vs ent: firl -, only a small fraction of working memory typically changes every3 rri;Itch selct-act cPvl,,: m ,d. second, similar condlition elements often appear repeatedly

anitomng the productl ia in production systems. Rote exploits the first feature by storing

3 re¢,,ult of match from prevot - cycles and using them in subsequent cycles. Rete exploits

h second featur, by rcognizing condition elements referenced in multiple productions

3 and performning coninoim tests only once (13:4).

The Rete algorithin uses an augmented discrimination network compiled from the

3 llSs of the product ioms to perform the match. In fact, the name -Rete- comes from the

latin word ft, -nt-work." (29) Figure 3.2 shows such a network for productions pl and p2

which appear in th, top [tart of ti,, figure. In this figure, lines have been drawn between

nodes to indicate the, ptt hi> almg which information flows. Information flows from the top

3 node down along th, ..... it I.

U 3-2

I



(rule p1 (('1 attrI x attr2 12) (rule p2 (C,2 attnl 15 attr2 ?y)

(('2 altn 15 attr2 Ix) (C4 attI ?')

(('3 attrl "x) (modify I attrI 12))

C la s=C1 Class=C2

at tr2-zl2I- at r11 Class=C3 C ass=Clt

a i d ri d val ph mem

I ~t-wl aI&-me

F p1 Conflict Set p2

AdJ u \\rkiig MeoryNote: t-wn represents a token

fact]1: (('I at tn 12 attr2 12) and its ccaitents

fact 2: ((C2 attrI 12 attr2 1.5)5 fact-3: ((C2 attl 1T) atti-2 12)
fact4;: ((3 attri 12)

3 Figurv 3.2. Sample Ilete Graph (14:12)

I3~ 3



To genieral(, il( lie nt wrk for a particular expert system application, the production

3 ~rules are parsed and** l~ is by a netuwork cornpiltir. Note that the Rete network

compiler is riot it co uiiipllr III the# convent onal sense of computing. The Rete compiler

builds a network which serves as the data structure acted upon by the inference engine

(lurinty execution of the e-xpert systemn.

I Ie nTl Twork cmIldipiler proceeds first with the individual condition elements in the

rb 111S>.V ec cot01i60ion element,. the compiler chains together test nodes that

Ow.lo k 11lw f lowi rl'I

I 0i I le atirlble, illt lie Coinditioni element that have a constant as their value are

>-at i fied

I if tie attribulte> ill he coniditioin element that are related to aconstant by a predicate

3 are itlsfed

* If twko occurrenrces of the same variable within the condition element are consistently

1)()1oIir (i.e. wor'Nng mnerory elements with the same value for the specified attribute

I'i~ Tal)( olei the chain performs onie such test. These three tests are called intra-

1on171(o11te)t1 becaulse they corresp)ond to individual condition elements. In Figure 3.2.

I lie Ow nmle> withi a >ilepredecessor (near the top of the network) are the ones that are

3 criic'rned with individual condition elenents.

Once thO twor compiler has finished with the individual condition elements, it

aod>k riodev t hat clock for consistency of variable bindings across the multiple condition

ee Illit> i the Ill s. 'I lws(e tests are called in ter- conditionz tests because they refer to

5 riuil~ p~ c'i~it (ii leneui >.The nodes with two predecessors are the ones that check for

consistenicy of variable hinmdinigs between condition elements.

3 Finally, the conipilkr adds a special terminal node to represent the successful match-

Ilng Of the productilon to which this part of the network corresponds. The terminal nodes

;tre at the bottom of t lie figure.

I3 3-



U
I

Note that when two l.IlSs require identical nodes, the compiler builds a shared set

of nodes in the network rather than duplicate nodes. This feature of Rete ensures that the

same test is not performed releatedly for multiple rules within a single match step.

To avoid performing all of the same tests completed during the previous match step.

whe ete alg(rithin stores the result of a match with working memory as state within the

network. Only changcs made to the working memory by the most recent production firing

3 have to be processe(d every iatch-select-act cycle. That is, the input to the Rete network

consists of the most recent changes to the working memory. These changes filter through

the network and, where relevant, the state stored in the network is updated. Due to

the Rete algorithm's stale-saving feature, the amount of effort expended by the matcher

3 djpends primarily on the rate of change of working memory rather than the absolute

size of working nivinorY (11:37). The output of the network consists of a specification

of changes to the list of rules eligible to be fired. This list of rules is called the conflict

s(t because only one of these rules may be allowed to fire under the production system

gparadigmn. Consequently, the rules can be said to be in conflict over the right to be fired

in the current cycle.

3 The objects that are passed between nodes in the network are called tokens, which

consist of a tag and a list of working memory elements. The tag can be either a +,

indicating that an eleient has been added to the working memory, or a -, indicating that

an el-ment has been &10(d from working memory. No special tag for working memory

3 element modification is needed because a modify is treated as a delete followed by an

ad(d. The list of working memory elements associated with a token corresponds to the

3 perinutation of those eleiients that the system is trying to match or has already matched

against a subsequence of condition elements in the LIIS.

I"ho discriminalin network produced by the Rete network compiler consists of a

number of the follow iig tYpes of nodes:I
* Root Nod(: This iod, forms the root of the discrimination net. It broadcasts tokens

3 corresponding to any change in the working memory to all its successor nodes. In

Iigiiir, .3.2, t h r..ol node is shw in at tht. top.

3-5I



I

o rConstant 7,,,t (t-coist) Nod(s: These nodes are used in the network to perform

intra-condition tests, for example, to check if condition attributes that have constant

symbols or numbers as their values are satisfied. Each t-const node checks for one

feature. \Whenever the token arriving at the input of a t-const node satisfies the

associated test, it is passed on t,, the successors of the t-const node. If the token

does not satisfY the test, it is not passed on to the successors. In Figure 3.2, the

nodes towards the top of the network are t-const nodes. Because the second condition

I element of production pl is similar to the first condition element of production p2,

t-const nodes -"lass=C2"" and "attrl=15' are shared in the network for rules pl and

p)2 .

9 Alpha Mkmuory (alpha-m ) Nodcs: If a working memory element satisfies all intra-

condition tests for a condition element, the working memory element is said to par-

tially match the condition element. Note that it may not, as yet, satisfy all the

inter-condition tests. Tokens corresponding to working memory elements that par-

tially match a condition element are stored in the alpha-mem node for that condition

element. When a token arrives at an alpha-mem node with a + tag, the token is

stored in the alpha-mem node and a copy of the token is passed to the node's suc-

cessors. If the tag is -, a corresponding token with a + tag must alre.ady exist in the

alpha-mem. The corresponding + token is deleted from the alpha-mem node and

the incoming token is passed down to the successors of the alpha-mem node. If two

condition elements in the same or different productions have exactly the qame tests

for a successful partial match, the network compiler generates a shared alpha-mem

node for the two. This sharing of an alpha-mem node can be seen in Figure 3.2.

* B(ta Aftmory (bfta-mrnm) Nodes: Ji3,t as alpha-mem nodes store tokens that partially

match individual condition elements, so beta-mem nodes store tokens that partially

match two or more condition elements in the LHS of a production. The list of working

memory element 4 in beta-mem tokens has length two or more. The response of beta-

mem nodes to the arrival of tokens at their inputs is exactly the same as that of

alpha-mern nods. The beta-mem nodes form the left input of and-nodes and not-

nodes.

3-6U



I
I

a And-.Vods: hlle and-nodes are the first of the two-input node types. The primary

3 function of an and-node is to check for consistency of variable bindings between the

partially matched tokens it receives on its left and right inputs. The right input of

an and-node always comes from an alpha-mem node, while its left input can come

from an alpha-mnem or a beta-mem node. Whenever a token arrives at the left input

3 of an and-node. the and-noit compares tile incoming token to each token stored

in the memi-node connected to its right input to check if they are consistent. For

every right-token which is consistent with the left-token, a new token is constructed

and sent down to the successor nodes. The new token has the same tag as that of

I the left-token, and the list of working memory elements is the concatenation of the

working memory element lists for the left and right tokens. The case when a token

3 arrives at the right input of an ,rd node is processed exactly as above, with left and

right interchanged.

i a Not-Nodh.. The not-nodes are the second of the two-input node types. They also

have a left and a right input. The not-nodes are used by the network to implement

negated condition elements. Their functionality differs from that of and-nodes only

in minor ways. One difference is that not-nodes keep reference counts with tokens in

left memory to find when there are no tokens in the right memory that are consistent

with them.

e Productior Aod(s (p-nodcs): These are the terminal nodes in the network. There is

I one such node associated with each production. Whenever a token with a + tag flows

into a p-node, it adds an instantiation (corresponding to the token) of the associated

I production into the confict set. The arrival of a token with a - tag leads to the

deletion of the corresponding production instantiation from the conflict set.

3 a Other Nodes: Other than the node types mentioned above, the network uses two

more node types. These are the Two-Nodes and the Any-Nodes. The two-node is

I used as a place filler in some circumstances, and the any-node is used when the value

of an attribute is to be one of a number of alternatives.

The match step in a Rete network interpreter can itself be divided iit(o two parts: the

I 3-7

I



I

selection phase, which consists of evaluating the t-const nodes; and the stat(-utxatc phase,

which consists of evaluating the alpha-niem nodes, beta-mem nodes, and-nodes, not-nodes,

and p-nodes. Comparing these two phases, about 75% to 95% of the total processing time

is spent performing the state-update phase (14:47).

I .3.3 Parallclizinq Rdt-

3 The Rete match algorithm is suitable for parallel implementations. The data-flow

like organization of tile Rete network makes it possible to evaluate the activations of dif-

3 ferent nodes in the network in parallel. It is also possible to evaluate mulliple activations

of the same node in parallel and to process multiple changes to working niemory in parallel

I (1-1:20). Of the many sources of production system parallelism, the following three are par-

ticularly important in the parallelization of Rete and, specifically, of the state-update phase

3 of the Rete match step: production parallelism, node parallelism, and action parallclism.

Production parallelism is accomplished by dividing the productions in a program

3into several partitions and performing the match for each of the partitions in parallel.

Figure 3.3 illustrates the partitioning of productions of an expert system. Production

3 partitioning is a static task decomposition approach. Consequently, the main advantage of

using production parallelism is that no communication is required between the processes

3 performing match for different productions or different partitions. That is, it is large-

grain parallelism. Disadvantages of production parallelism are that it is limited by I) the

3 typically small number of productions affected per change to working memory, 2) the large

variance in the amount of processing required by the affected productions, and 3) the loss

of sharing in the overall Rete network as a result of production partitioning (14:48-49).

Node parallelism, which is unique to the Rete algorithm, means th;t activations of

i different two-input nodes in the Rete network are evaluated in parallel. An advantage of

node parallelism is that !,oth activations of two-input nodes belonging to different prodluc-

I tions (corresponding to production parallism) and activations of two-input nodes belonging

to the samte production (resulting in extra parallelism) are processed in parallhl. Node par-

3 allelism is implemented at a finer granularity than production parallelism to I ) reduce the

effect of largo variance in the amount of affected productions processing, and 2) to recover

i
3-8i



I
I
I
i
i

3 -S vl. . I

MII\atch for Pi

I
3 Figture 3.3. Production Parallelism (17:48)

E some of the sharing lost in the overall Rete network when using production parallelism.

This fine granularity, however, leads to increased communication requirements between

3 processes evaluating the nodes in parallel (14:51).

Action parallelism refers to the concurrent processing of changes made to working

3 memory when a production fires. Action parallelism enhances the speedup obta;able

using production, node, and other forms of parallelism (14:54).

A significant amount of research has been performed toward implementing paral-

lel Rete on multiprocessors (14, 25). Fine-grain node parallelism, enhanced with action

parallelism wherever possible, is the preferred implementation method when using a mul-

tiprocessor architecture. This method is attractive because multiprocessors have the ad-

vantage of shared memories (see Appendix B), which offsets much of the cost of increased

i communication associated with node parallelism (14:58).

In a typical multiprocessor design, a single copy of the Rete network is held in shared

3 memory. The match is broken into fairly small units of work called tasks, where a task

is an independently schedulable unit of work that may be executed in parallel with olier

I
3-9

I



U
I

tasks (17:103). Each task is represented by a token. This token is essentially the sane

as that described for the sequential Rete matcher, except that it has two extra items of

information: the adr(bss of the node to which the token is to be sent; and. if that node

is a two-input node, an indication of whether to send it to the left or right input. The

list of tokens that are awaiting processing is held in a central data structure called a task

qii w. When a processor in the multiprocessor becomes available, it removes a token fron

the task queue. If. during processing of a token, new tokens are to be sellt out, these

are entered into the task queue for subsequent processing. See (17) for details of a highly

successful parallel production system implementation employing Rete on a shared-nienorY

3 multiprocessor.

Unlike the parallel Rete research performed on multiprocessors, implementation of a

parallel Rete matcher on a multicomputer architecture remains relatively unexplored for

two basic reasons. First. the most natural approach to implementing production sVsleiiis

on a multicomputer is production parallelism, enhanced with action parallelism. Hul

preliminlary simulation analysis of parallel processing using only production parallelisiii and

action parallelism indicates that the speedups attainable are very low (32:92). Second. t lie

iiode parallelism approach ,vas shown theoretically and through simulation to be superior to

production parallelism. But the fine granularity of node parallelism adds coiniunicaloilts

costs that may restrict the class of suitable architectures to shared-memory multiprocessors

I (1:5,S).

Limited theoretical analysis of a parallel architecture which implements Rete in an

object-oriented manner on a multicomputer has been performed (16). This research draws

3 heavily from work performed on multiprocessor designs. At the time of this research investi-

g(io1, hte onY parallel multicornputer implementation of a production system interpreter

3 that employs Rote is I1 CLIPS, developed for the FLEX/32 (MIMD) multiconmputer (:,).

S..4 Summary

Production sYstenis lnd themselves to parallel execution. The only niandatory syn-3 chronization point in the match-select-act cycle exists after the select step and before tlie

sui, sequent act step. Speeding up )processing of the match step is critical, as it typically

I 3-10

U



I
I

constitutes around 90(A of the production cycle time. The Rete match algorithm speedts

match time in two ways: first, Rete saves WM search time by saving state between cycles,

a feature that takes advantage of the small fraction of WM typically changed per cycle;

second, Rete recognizes condition element references common to multiple rules and exe-

cutes common tests only once. The data-flow like organization of the Rete network makes

it suitable for parallel inplementations to take particular advantage of production par-

allelisni, node parallelism, ard act parallelism during execution. Parallel niulticornpmter

implementation of a production system interpreter that employs Rete is an area of research

still in its infancy.

I
I
I
I
I
I
I
I
I
I
I

I 3-11

I



I
U
3 11. Rcscarch Methodology

This chapter presents and justifies the research methodology applied to parallelization

U of the RAV expert system during this research investigation. The following are the restated

and expanded goals of this research:U
e Present the fastest tprOccssing of the RAV expert system achieved to-date using the

U current state-of-the-art parallel design and determine this design's expected perfor-

mance if implemented on the iPSC/2.

3 a I)esign and implement a new parallel design on the iPSC/2 using a more efliciernt

and effective niatch-select-act algorithm (Rete) to achieve speedup over the current

3 state-of-the-art design.

* Ensure valid performance comparisons between these parallel designs by considering

implementations of the designs that use the same tools (e.g. hardware, languagv)

and the same input data wherever possible.

* I)etermine the relative usefulness of these parallel designs by showing their relation

to the expected lower and upper bounds of parallel processing performance and to

the desired "real-time" performance of the RAV expert system.

4.1 Justification of Method Slcctcd

It is common practice in parallel computer architecture research to compare the

performance of one's ncu' design with that of the current state-of-thc-art design applied to

the same problem. Speed and correctness of processing are the key performance criteria

analyzed. The comparison of designs is necessary to show the advancement of knowledge

3 in the field of application. But this approach by itself offers only a very limited analysis

of the merit of the new design for two main reasons.

n First, the new parallel design is often configured to run on a different machine than

that used by the previous parallel design. Consequently, the performance speedups at-

3 tributable to the different hardware are not distinguishable from the speedups attributable

solely to the new program design. It is imperative that architectures being compared use

44-1

I



I
I

identical, or at least very similar, hardware to isolate the performance differences at-

I tributable to program design.

Second, the true merit of the current state-of-the-art parallel design is often a mys-

tery. This is especially true when current research into a particular area of application is

relatively immature. In this case, it is not enough that a new parallel design outperforms

the previous -best" design, because both designs' performances may still fall far short of

the theoretical performance potential for such an application.

3 4.2 Performancc Spcetrunm

To determine the true merit of a parallel design for a particular application, one inust

3 determine where on a pxrformance spctrum this parallel design lies in terms of processing

speed. The processing speed is defined in terms that are significant to the particular appli-

3cation (e.g.. for expert systems, the performance metric of interest is typically the average

number of rules fired per second). Two logical and essential metrics on the performance

£spectrum are a good serial design's processing speed and the required, or goal, processing

speed.

Performance data on a serial, or single-processor, design for an application is often

available to the researcher. In fact, it is sometimes the failure of a serial approach to

3 solve a problem in what the user defines as "real-time" that leads to attempts at parallel

solutions. Although the "goodness" of a particular serial design is difficult to quantify,

still the performance of some serial design is useful to quantify the performance payback

real'zed by parallelizing a solution in the new design. The serial design's performance

serves as the lou,cr bound on the performance spectrum.

The other key metric on the performance spectrum is the goal processing speed. The

maturity level of computer architecture research with respect to a particular application

can only be determined by comparing the performance of a new design with the goal

performance. For example, the "real-time" performance requirenient is the goal driving

most research in parallel processing of expert systems. The real-time metric defines the

s)ped at which computational results must be produced for the particular application to

I
4-2

I



I
I

be successful

An additional metric on the performance spectrum is needed to show if it is rea-

sonable for the researcher to expect to meet the performance goal within the limitations

I of research assumiptions. F-or example, although processing speed comparisons among a

serial design. a state-of-the-art design, and a new design may all show progress toward

the goal processing speed, the hardware of choice may not be physically capable of ever

actually achieving the goal performance. Consequently, there exists a research need for

an uppxr bound performance metric under given application and archilecture constraiiis.

Of course. because the upper bound is not readily attainable like the other performance

I spectrum metrics, theoretical and/or simulation methods must be applied.

Figure 4.1 is an example performance spectrum chart illustrating the above metrics

and their interaction for a fictional application. Note that interpretation of this figure

suggests the following:

1. The performance of the serial design applied to this problem falls far short of tihe goal

performance. This poor serial design performance leads the researcher to consider

the possibility of attempting a parallel solution.

2. The upper bound performance metric suggests that the architectural approach being

taken, under ideal parallel conditions, has te potential to achieve the goal perfor-

mance. The upper bound performance findings encourage coitinued research oni the

current architecture.

3. The state-of-the-art design realizes only limited performance improvement over the

serial design. This limited performance improvement suggests to the researcher that

perhaps a whole new design approach, rather than enhancements to the previous

design, should be pursued.

4. The new design performance produces significant speedup over I lie serial design and

approaches the goal performance, lending merit to the researlch contri)ution of this

new design.

I
U 4-3

I



(InL i t I1 t f1 t r

I
I

I
I

I

I Processinfg Speedg

(in units of interest)

I p

1 2 3 4 5 6 7 8* ...
Number of Parallel Processors

Legend: I - lower bound performance metric
s - current state-of-the-art paralle] performance
p - proposed parallel architecture performance
g - goal performance
u - upper bound on proposed architecture performance

Figure 4.1. Example Performance Spectrum Chart

I
I

I
4-4

I



U
I

4 .3 Research Inru tigati 'tt p.,

Based on the met lodology detailed above, this research is comprised of the following

steps:

" Step 1: I)eterliiine tihe lou' r bound performance expected in processing the RAV

expert system. To do this, a "good" serial design is impleriented on the iPSC/2

configured to use only one of its processors. The performance metric observed during

the processing of the RAV expert system on a single processor is recorded as the

lower bound (worst case) performance metric. This metric is needed to determine

tile speedup achieved by any of the parallel designs (e.g. Speedup = Time for Parallel

Processors to Compute Result / Time for Single Processor to Compute Result).

" Step 2: Determine the tlptr bound performance expected in parallel processing of the

RAV expert system. The upper bourd is needed to estimate the maximlul speedup

achievable under a given parallel design. The theoretical maximurn speedup of N

3 (where N is the number of parallel processors) requires the very liikely pairing of

perfect load balance and no communication among processors. A more realistic esti-

mate of the minimal communication and optimal load balance achievable is developed

theoretically. Lamanna's hypercube model is adjusted to describe the performance

3 of the RAV expert system over several iPSC/2 configurations of differing number- of

parallel processors (26:At).

* Step 3: Analyze theoretically the expected performance of the curr7xt slalf-of-th(-art

parallel architecture as implemented on the iPSC/2. This analysis entails consider-

ing the likely effects on the Shakley design's performance due to any upgrades added

to date to the iPSC/2 as compared to the iPSC/1. Analysis results for the Shak-3 lee design over several configurations of differing numbers of parallel processors are

recorded.

I Step 4: Design, imp~lement. and analyze the performance spe(lup (if any) of a ncuw

parallel archil(cfur on the ilS('/2 using a better match-select -act algorithm and an

3 appropriate dlecomposition algorithm. This design is exercised over several iI'SC/2

4
4-5

I



configu ratitons ciiiploy inrg iifferent numbn ers of parallhi procees;sors arid the perfor-I mance mietTi( s are recorili d

o Step 5: C'om~pare lhe perfetriliarice results prod uced in previous- steps withI respuect

Utot thv RAX V ni-t Vit rf qiiir ( it y. A FW X\I. project in a iiagcr are initterviewed to de-

terri i l how fa~t the R A exjpert system miust be processewl 'i ordler for thle 1? ;\

o he feasible (e.g llow fast is "real -t i re"?). This real-Il rit performriance inet ric is
plotted in relation to the plot ted performance metrics deterinied lit Steps" 1 throiugh

.4. lsis of the perforii a~ice met rics shows whet her anyt V One of tie( act ual desi 0 us1

im plemuent ed or, thle ij)5( '/2 rieet s the RAV real-time performnance re(1 uirenienti o,(

whetlher the( smm In!:ieul miodel of ;, ii opt mial design cart suhport thle RIAV expewrt svs-

tent lit real-tune. lit tite latter case, such findings suggest how manY iit SC/2-liko

pri uif> r> noeet to 1ihe appdlied to achieve real-ti me processinrg of tie( '( AV expert

sytL iii ven u Iii thai commitunnicat ion overhead and perfect load balance. This irifor-

Sruial i couldl addh inslit into the feasibility of the RAV turoject.

4.4 t1fs ctPoetu (.

All R A\ expert sv."t eri designs, operate on the sanme dailii set, T hie designs are

validated by di rectl ii. peetlon oif thle result s arid of performance rmet rics5 cornpiled diiri rig

expert systoen procvssilhg.

'lie expert -,N s erri itrfuurrianu e nc of particular mit esI is proeessiuig spitid at

I amil.d (leftil~ InI erriis of tie( average rin nt er of rules fired per seori d. Timning data are

also collected onl t be- average . mei spent in each o thle match, select, and1( act steps (liiri rig

processi iig.

I4.. 5 .Suru?1oa ry

The researrh inie hodology applied In t his in vestigat ion st resxsrot on lY I lie deveb up-

nient of a new pitral lel arch itoeelit re for tie( RAV expert syst em hunt also thle qua nt ifieat nut

of this design's corntribuit ion to RAV expert system research .' The fullowi ig is a surrinmary

of thev PAV expert svsto erniesa rch iIn vest igatIion stcp~s:

4-6



o Step 1: I)etermine the lower bound performance metric realized b, a good serial

RAV expert system design.

e Step 2: Deternine theoretically the tipper bound performance metrics achievable by

a parallel design implemented on the chosen architecture.

e Step 3: Determine theoretically the current state-of-the-art parallel design's perfor-

miance metrics realized when running on the chosen architecture.

a Step 1: Determine the actual performance metrics realized by a new parallel design

implemented on the chosen architecture.

I * Step 5: Compare these performance metrics to the real-time performance re quire-

nent.

4
I
a
!
I
!
I
!
I
I

4I-7

I



I
I

'. Stp I: Lower Bound Performanlce

5.1 System DesignT

I To define the processing speedup attributahle to parallel processing of a program, one

must first establish the processing speed of a "good" serial design as a base of comparison

(e.g. Speedup = Parallel Processing Time / Serial Processing Time). For this research.

the processing speed of a "good" serial design is needed to delineate a lowcr bound of

performance expected in processing the RAV expert system. Furthermore, the serial design

must be implemented on hardware similar to the hardware upon which subsequent parallel

designs are implemented if comparison of their processing speeds is to be valid.

The proposed serial design employs an existing serial expert system interpreter, or

shWI1, which uses the Rete algorithm when performing the match-select-act cycle on any

input set of rules and initial facts. The design decision to use an existing shell to support

the RAV expert system allows this research investigation to take full advantage of the

Rete algorithm optimization efforts afforded during the implementation of the expert sys-

tem shell. Expert system shells considered as alternatives for this implementation include

Inference Corporation's Automated Reasoning Tool (ART) (1). Carnegie-Mellon Univer-

sity's OPS5 and paraOPS5 (9), and NASA's C-Language Integrated Production System
i (CLIPS) (3).

The original RAV expert system was developed using ART (see Appendix A). mak-

ing this expert system shell a good candidate from an RAV knowledge-base portability

perspective. But ART is not an attractive alternative for this design effort for several

reasons. ART is currently available only in Lisp-based and Bliss-based versions. A C-

based interpreter is desired for this investigation, rather than a shell based in a symbolic

language, for both program efficiency and program portability reasons (26:190). Also, the

cost of acquiringi new vvrsions of ART for the purpose of this research proved prohibitive.

3 Carnegie- Mllo's OPS.5 exl,,rt system shell series was developed and optimized by

the originators of the Vot, algorithm (10). But, again, the early versions of OPS5 are

lisp-based. A latr parall,1 versioni, called paraOPS5, can execute iii serial mode ald is

C-based at a macro-level. But paraOPS5 is only partially C-coded, with the Rote network

55-1
I



I
I

embedded directly in the National Semiconductor NS32032 machine code for realization

of more speedup (17:96). Neither of these existing designs lend themselves to convenient

rehosting into a serial, fully ('-based OlS5 to execute on the il'SC/2's Intel 80386 chip.

iNASA's C-Language Integrated Production System (CLIPS) interpreter is chosen

as the expert system sheji for this research investigation (33:7.13). As the shell's name

suggests. the serial CLIPS is written in C specifically for the purposes of efficiency and

portability (3:71). Of course, to exercise the RAV expert system using the CLIPS in-

terpreter, the RAV knowledge base (rules and facts) is transliterated from its original

Automated Reasoning Tool (ART) syntax to CLIPS syntax with no loss of functionality.

I 5.2 Detailed Dsign

A full CLIPS interpreter executes on the host processor of the il)SC/2. The source

code of the CLIPS program, written in the C-Programming Language, is compiled without

modification using the Greenhill C compiler under the UNIX/Systein V operating system.

At system initialization, the processor is loaded with all of the production rules in the RAV

knowledge base from which to build a Rete network. Then the initial facts are asserted in

I working memory, after which the RAV expert system is ready to execute. 'hen production

system execution is complete, performance data are collected and displayed by CLIPS (e.g.

3 rules fired, execution time). The high-level algorithm employed by the serial design is

illustrated in Figure 5.1.

3 Note that this algorithm is the same as the match-select-act cycle algorithm described

in Chapter II. Of course, no interprocessor communication is required because the iPSC/2

is configured as an SISD computer (see Appendix B).

5 5.3 Implementation

Because the expert system portions of the RAV constitute the scope of this study,

only the Piloting Expert System (PES) and Vehicle Control Expert System (VCES) are

executed under CLIPS (see Appendix A). 'hat is, the conventionally programmed subsys-

tems of the prototype RAV design, such as the Route Planner and the Intelligent Vehicle

I



I

Procedure RETE:

1. do while (termination state not detected);

2. match - update the Rete network with WME

3 change applied during the lasl cycle

3. select - select a production from conflict set

1 4. act - apply WME change specified by selected

5. end do; production's RHS

Figure 5.1. RAV Serial Rete Design

i Workstation. are not present to provide inputs to the PES and VCES. Consequently, the

RHSs of key rules are altered to artificially introduce the values normally produced by

E. one or more of the missing conventional subsystems. In this way, the RAV rules are kept

firing to simulate progression through a reasonable air mission. The benchmark air mission

I consists of thp execution of the entire RAV takeoff sequence of rules, the initiation of all

possible RAV air maneuver rule sequences in the knowledge base, and completion of the

I entire RAV landing sequence of rules.

The initial facts are asserted into working memory by the firing of a startup rule.

The startup rule has no conditions in its LHS, meaning it satisfied regardless of the state

of WM. The RIIS of the startup rule consists of a set of fact assertions that, when the

rule is fired, load all of the facts required to activate the desired set of initial RAV rules.

The subsequent RAV rule firings simulate the guidance of an aircraft through the entire

takeoff sequence, a series of air maneuvers, and the entire landing sequence. It is for these

subsequent rule firings that timing data are collected. For this study's benchmark RAV

execution, a total of 73 RAV rules are fired in approximately 3.5 seconds by the CLIPS

interpreter for an average of 20.9 rules per second. The entire RAV rule set consists of 273

rules. Therefore, the 73 rule firings observed, representing nearly 27% of the RAV rule

1 5-3

I



I
i

base, is considered a valid number to show performance difference alnong designs.I
5.4 Summary

U NASA's serial C-Language Integrated Production System (CLIPIS) shell is used to

execute the RAV expert system. The original ART-syntax RAV knowledge base is translit-

erated into CLIPS-syntax and is adapted to run without external input to allow execution

of the RAN' using CLIPS. A full CLIPS interpretter executes on the host processor of the

iPSC/2 under the UNIX/System N operating system. Using this serial design. an average

RAV processing rate of 20.9 rules fired per second is observed. This processing rate serves

as the lower bound performance for execution of the RAV expert system.

5
I
I
i
I
I
I
I
I
!
I 5-4

I



I
I

VI. Step 2: Upper Bound Performance

6.1 System Deszgn

A critical metric in any parallel architecture design is the estimate of the maximum

speedup achievable. The theoretical maximum speedup of N (where N is the number of

parallel processors) assumes the unlikely pairing of perfect load balance and no communi-

I cation overhead. A more realistic estimate of the minimal communication overhead and

near optimal load balance achievable within a given design must b, developed theoretically

and/or through simulation.

As Lamanna points out in her Performance Study of the llypercube Architecture.

5 evaluating the performance of an architecture cannot be divorced from the algorithm used

(25:10). Consequently, the theoretical upper bound performance metric in this research

I investigation represents the maximum potential RAV expert system processing speedup

realizable using the parallel expert system algorithm proposed under ideal communication

3 and load balance conditions. The units of speedup of interest regarding the RAV expert

system are the number of rules fired per second.I
6.2 Dctailed Design

The upper bound performance analysis presented here follows closely the timing

analysis detailed in Appendix C.

3 Certain assumptions are made at the onset of this analysis to present an ideal corn-

puting environment for the RAV expert system executing on, the proposed parallel ex-

pert system shell which employs mainly production parallelism. First, the optimal load

balance is defined as an even distribution of the workload experienced by the serial algo-

rithm amongst the parallel processors available to the parallel program. No computational

overhead is introduced through parallelization. Second, the only activity other than coin-

putation on a processor that produces a time cost is interprocessor communication. No

system interface overhead, such a.s input or output (I/O), is allowed to degrade optimal

performance.

I
6-II



I
I

From Appendix C, the time required to complete one match-select-act cycle under

3 the proposed parallel design is defined as follows:

(Equation 6.0)

O([maxpE([SUrn2PE'sCEs (match filter time)] + local select time)] +

I select compare/exchange time +

act broadcast time + local act time

This equation states that the cycle time consists of 1) the maximum time spent by

one of the processors updating its local Rete network and selecting a candidate rule to

fire from its local conflict set, plus 2) the time for the processors to determine, through

a gray-code compare/exchange, which processor has the best candidate rule to fire , plus

3) the time to broadcast the actions specified in the RIIS of the rule to fire. Under

the ideal condition assumptions described above, the time spent by each processor to

update its Rete network, select from its conflict set, and fire the best rule's RIIS actions

is uniform across all processors (e.g. perfect load balance). Furthermore, the sum of tile

times spent processing these uniform task loads equals the total time spent processing the

entire workload serially. Thus Equation 6.0 simplifies to the following, with N being the

number of available processors:

(Equation 6.1)

I O(( total serial processing time / N ) +

3 select compare/exchange time +

act broadcast timeI
6.3 Implementation

I The task of determining the upper bound performance for the parallel design pro-

posed in this investigation now becomes that of acquiring actual and/or expected times for

the total RAV expert system serial processing time, the average select compare/exchange

3 6-2

I



I
I

time, and the typical act broadcast time experienced on the ilSC/2 hardware. Substitut-

ing these time values into the equation presented in the previous section yields the upper

bound of expected performance in terms of the total processing time required to complete

one match-select-act cycle.

The total serial processing time, determined empirically using the serial CLIPS design

described in Chapter V, is 3.5 seconds to fire 73 rules. The select compare/exchange time

and act broadcast time each depend on the data rate of the interprocessor communication

lines on the iPSC/2 and on the size of the data structure sent as a message. Because tile

minimum message data structures for both types of messages were ];aowr prior to actual

parallel design implementation, the processing times for these activities are also determined

empirically on the iPSC/2 hardware.

The data structure passed during a gray-code compare/exchange consists, as a min-

imum, of the integer ID of the processor passing the message and an integer value repre-

senting the firing priority, or salicnce, of its candidate rule. A total of d coinnummnicatiolls

of such a structure (where d is the dimension of the hypercube) is required to ensure the

structure representing the best rule-to-fire candidate is at the base processor. say node 0.

3 The last communication required in the select step is the broadcast of the best rule-to-fire

structure from the base node 0 to the other processors. The further assumption is made

I that a broadcast requires the same amount of time as does a node-to-node communica-

tion. A total of d+1 communications during the select step add cost to the total program

3 execution time.

The data structure broadcasted during the act represents the RIIS actions of the rule

3 selected for firing. These RIIS actions can consist of any number of fact assertions, fact

retractions, and interface actions (such as I/O). Again, to produce ideal computing condi-

3 tions for optimal processing speed, only fact assertions and fact retractions are considered

in this analysis. Another simplification is that all of a selected rule's RIIS actions are

5 passed in a single data structure large enough to contain the average number of assertions

and retractions specified by a typical rule in the RAV rule set. The assertions are assumed

1 sent in the form of a typical RAV fact string and the retractions are assumed sent in the

form of an index to the fact in WM to be retracted.

6-3

I



I
U

Inspection of the RAV knowledge base suggests that the average rule's 1I1S specifies3 approximately two fact assertions (1.46 average observed) and about two fact retractions

( 1.18 average observed). The typical length of a fact string to be asserted is approximately

3 231 characters, which represents a message size of 231 bytes for each asserted string.

Integer IDs of facts to be retracted add 8 bytes each to the message size. Under the above3 assumptions. the typical single message broadcasted during the act step is about 470 bytes

ong.

I The communication times required for passing of select step and act step messages

on the iPSC/2 are determined empirically using a simple ring communication program

that sends messages of the specified size around the nodes of the hlypercube. configured

as a ring. Timing data are collected as message passing proceeds. Each select message

communication can be completed in 0.00424 seconds. The single act message can be

broadcasted in 0.00776 seconds.

Summing the times derived above, the upper limit on the time required for the pro-

posed parallel design to process the 73 rules fired in the RAV benchmark follows Equation

6.1:

I ( 3.5 / N ) + ((d+l ) * 0.00424) + (0.00776) seconds

3 where N = 2 " is the number of parallel processors used. I)ividing the 73 rules fired

by the result of this equation yields the upper bound performance, in rules per second, for

3 the proposed parallel design.

3 6.4 Summary

The theoretical upper bound performance metric represents the maximum poten-

tial RAV expert system processing speedup realizable using the proposed design under

ideal communication and load balance conditions. Assumptions made to simulate ideal

processing conditions include the following:

3 s Ideal load balance suggests even distribution of the serial workload amongst available

parallel processors.

I 6-4

I



I
N

" Neither computational overhead due to parallelization nor system interface overhead

I due to I/O is considered.

" The minimum-size data structures are assumed passed whenever communication is

required, and both node-to-node and broadcast communication times are uniform

3 and equal.

" All of the actions specified in a rule's RIIS can be contained in a single data structure

for communication purposes.

Communication times required for passing messages of sizes typical to the RAV are deter-

Imined empirically. The equation for the upper limit on processing performance is

3.5 / N ) + ((d+l) * 0.00424) + (0.00776) seconds

where N = 2 d is the number of parallel processors used.

6
I

Il

I
I
I
I
I

6-5

I



1II. Step 3: Cur'rcnt Best Performanc<

7.1 System Desigii

I The performance of any new parallel architecture must be compared to that of any

CXsting parallel architecture that is considered state-of-the-art. This comparison is nec-

essary to show advancement in knowledge for fast processing of a particular application.

But for the comparison between parallel designs to be valid, the designs being compared

must experience similar support environments (e.g. hardware, compilers, languages). Oth-

erwise, it is difficult to discern whether performance differences observed are due to the

designs or rather to their individual support environments.

3 The latest architecture applied to the RAV expert system was designed by Shakley

(37). The processing speed of the new parallel a,chitecture proposed in this research inves-

5 tigation is compared to the speed tchieved by Shakley's architecture. Shakley's program

design was implemented in Lisp and on the first generation Intel Personal Super Computer

I (iPSC/1), a support environment different from that of the new architecture. Because ac-

tual reimplementation of the Shakley design in C and on the iPSC/2 is neither within the

3 scope of this research nor desired, a theoretical "reimplementation" is offered instead. That

is, the likely effects on the Shaklev design's performance due to any upgrades to the iPSC/2

3 as compared to the iPSC/1 are analyzed theoretically. The theoretical performance results

for Shakley's design are then used for comparison to the new parallel design's performance

3 results.

3 7.2 Detailed Design

The purpose of Shakley's research investigation was to analyze and explore the fea-

3 sibility of translating the RAV expert system written in ART for the TI Fxplorcr into

CCLISP for rehosting onto the Intel iPSC/1 Hypercube (see Appendix A). The focus of

Shakley's study was search parallelism within a production systemi (37:10-12).

In his parallel RAV expert system design, Shakley exploits production parallelism.

3 Production rules are equally distributed in a round-robin fashion across available proces-

* 7-1

I



I
I

sors in the iPSC/1 hypercube iiulticomputer. The rules constituting a processor's local

production memory (IPM) are formed into a linked-list data structire (37:26).

In ART representation. each RAV fact comprises part of a frame-like structure of

facts, called a schrma. Shakley preserves support for schemata in his design (37:41).

Schemata facilitale indexing into facts in working memory (WM), thus shortening the

time required to find and check the value of a given fact during the match step. Each

processor hosts a copy of the entire RAV WM.

For his parallel RAV expert system design, Shakley inipleiients on each processor

an enhanced version of a serial inference engine developed by XinstoIi and Horn (3,,).

Enhancements to the Winston and Horn serial engine include support for schemata. for

salience (priority) selection of rules, and for selection from a conflict set (or agcylda) of

rules (37:70). The ART rules and schemata are translated into a form useable by the new

inference engine. The high-level algorithm employed in Shakley's design is illustrated in

Figure 7.1.

3 Shaklev organizes the iPSC/1 processors into a spanning tree for interprocessor coni-

munication (37:56). A spanning tree connection pattern is another name for the gray-code3 dehinition of near-neighbor processors in a hypercube network (24:F-1). This spanning tree

connection pattern defines the parent-child relationships among processors referred to in

3 Figure 7.1.

Shaklev uses a test suite of small, prearranged sets of facts to trigger firings of subse, s3 of rules in PM. From these firings, results are traced to confirm correctness of operation

and to yield performance metrics on the speedup achieved by the parallel RAV expert

I system design (37:5S).

Shaklev acknowledges two shortcomings in his design. First, the round-robin assign-

imnnt of production rules to processors creates a load imbalance. Although all processors

host the same total number of production rules, these rules are of varying length and cora-

putational complexity, thus causing an imbalance. Second, the test suites of prearranged

facts are too small to take significant advantage of parallelism. The sniall test sets have too

little span of effect. on tle production rules in PM, thus limiting Ilhe potential production

1 7-2

I



I
I

Procedure HYPER:

1 1. do while (termination state not detected);

2. parallel match

2. pare m each processor waits to receive WMIE chainge

from its parent (except root node)

- each processor sends WME change to its child

in the tree (if any)

I - each processor adds WML change to its local

copy of the WM

each processor matches the rules in its P.M

against the facts in its WM

3. global select

1gb s each processor waits to receive the selected rule

from its child (if any)

I - each processor adds the rule received from its

child to its conflict set

each processor sends selected rule to its parent

on tree (not root);

- root processor holds production to fire after its

3 select is done

1 4. global act

- root processor sends to its child the W\ME change

specified by selected rule's RIIS

5. end do;

Figure 7.1. RAV iPSC/1 Hypercube Design (37:417)

7-3I



I
I

parallelisli.I
7.3 Implment(atti

On the iPS('/1, Shakley's parallel design is exercised using ote of two subsets of the

t IAV rule base, which he terms -sina," and "large" rule bases. For comparisor' purposes,

fl e faster performig sFnall rule base configuration is analyzed. Shakley's expert system,

(using the updated Winston a rid Itorn inference engine, fires an average of I Fille evtiry l

seconds in a serial mode. Speedups are realized in parallel mode, with a peak performance

of about O.a rules per -econd experienced in a 16-node configuration (see Figure 7.2).

I
I

IProcessing Speed

(rules per secol, d)

£ 2I
I

1 2 4 8 16 32

Number of Parallel Processors

3 Figiure 7.2. iPSC/1 RAV Performance Results (37)

Uploaded to ti ilSC( i2, the Shaklv design will experience immediate prformance

improvement due to the raw processing power of the iPS('/2 chip t,,clnology compared to

1 7-4

I



that of the iI'SC /1. At bc.t . a processing speed up of 4 timies can 1e expected due to uise3of the iPSC/2's 80:0-6 chip versus the iPSC/1 's 80286. A speeduip can also be expctedl inl

communications capability. Even though the iPSC/2's peak niecsage passing rate of 2.,x3 Mbytes per second ((21:1-11 )) is hardly discernable fromt tite il'S('/l *s rate of 2.!" MbYtes

per secondI ((22:1-22)). the ilPS(/2 commniunicat ions scheme will generate sonic sp)eedupi.

because t passing of a message bet ween two nodes on thle il"SC/2 (does not intterrupjt thle

processinga on interniediate nodes, as is the case on the iPSC/ 1.

U ~ ~Experiencing thle maximumn possible beneficial effect of tie( pirocessinhg and coiniinii-

cat ions uipgrades in the iP'SC/2, the Shaklev parallel design's performniice can lbe expect ed3 to improve to S rulles per second, at best. This analysis is abandoned at t his poinlt, hiecawo

the fiirt her possibl~e pierformance improvements in the Shaklev des;igit realizable (]itie to ie(

I ih)SC /2"s broadcast capabilityv and to a hypothetical reimpleinittat ion of the design in C

will cert ai rdv not be enough to bring t he design's performance iil) withtin lie 20- rules- pe'-I second range of the serial C LiPS lower bound performance. 1t is apparent t hat the( simiple

Wi n, and Hiornt inference engine, even executed in parallel. canniot compete, in termns ofI processing speed. wkith the( state-saving Rete algorithm emploved in CLIP~S.

7I



I
!

VIII. Sthp 4: Parallel Rete Pcrforman c(

This chapter describes in detail the proposed hypercube expert system shell, called

HyperCLIPS. The source code (Appendix D), programmer's manual (Appendix E), arid

user's manual (Appendix F) offer more detail for the interested rea(er.

8.1 Systen Desigrl

I The proposed design implements a parallel production system interpreter which uses

the Rete match algorithm. A C-based version of the serial C-Language Integrated Produc-

I tion System (CLIPS) interpreter is adapted to run in parallel on the Intel iPSC/2 (33:7.43).

The system is configured to take advantage of production parallelism, enhanced by action

I parallelism. The goals of this system are the following:

e support the speedup features inherent in the Rete network as much as possible (e.g.

state saving, one-time comparisons)

* minimize detrimental communication overhead, especially in the match step

* distribute productions in such a way that the workload is well balanced among the

available processors

3 * assign productions that are expected o be activated at the same time to different

processors to enhance parallelism

8.2 Detailed Design

Each active processor supports a full production system interpreter. At system ini-

tialization. each processor is parsed a subset of the productions in the IAV knowledge base

3 from which to build a local Rete network. With this static decomposition approach, no

interprocessor communication is required during the match step because all of the nodes

needed to process state updates of a production are local to the production's host prcces-

sor. Furthermore, each processor's interpreter performs a local select step, picking its local

3 candidate production for overall system firing. The local select step is performed without

intt'rprocessor com miunicat ion.

8-1

I



I
I

The first interprocessor communication occurs when the processors must compare and

exchange their locally selected productions to determine which of these productions is to

he selected for firing. Using the gray-code compare/exchange paradigm for 2 d processors

connected in a hypercube (see Appendix B), a total of d compare/exchanges must be

performed before the best candidate production is guaranteed to be at the root processor

I(2-1:F-1).

Once the root processor has the globally selected production, the working memory

element (WME) change specified by the RIS of that production is broadcasted to all

3 processors. This \VME change is the input to each of the processors that triggers the

subsequent match step. Tile entire match-select-act cycle repeats in this fashion until a

termination condition is detected or no productions are matched. Figure 8.1 illustrates

the high-level algorithm implemented in this design. Note that the few communications

3 required in this design occur only in the select and act steps.

'his design exploits all match-select-act cycle parallelism discussed in Chapter I1.

3Parallelism within the match step is achieved when all processors update their Rete sub-

graphs concurrently. Select step parallelism is possible because each processor performs

its select on its local conflict set upon completion of its local match, thus creating the

potential for multiple processors to be in their respective local select steps concurrently.

3 The processing within the match step and the select step of the same cycle can overlap

when the local match on one processor completes and triggers the start of the local se-

3 tct step before one or more other processors complete that same match step locally. Act

stop parallelism occurs in that, when tile globally selected production is fired, the working

3 nienOrv element change is broadcast to the waiting processors, triggering their concurrent

match steps. Overlap of the act step of one cycle and the match step of the next cycle is

3 m,,,,*ivable. That is, the WME' change is allowed, by design, to arrive at some processors

before it arrives at others, although "broadcast" implies the change arrives at all processors

3 simultaneously. Whether or not changes arrive simultaneously, local match steps begin as

soon as the WMNI change is received.

8
I

8-2

I



I
I
I
I
3 Procedure tIYPER-RETE:

I 1. do while (termination state not detected);

2. parallel match

- each processor receives WM change from root processor

- each processor updates its local Rete network

3. parallel local select

each processor selects a production from its local

conflict set

4. global select

- processors perform gray-code compare/exchange

- root processor holds production to fire when

3 compare/exchange done

I 5. broadcast global act

- root processor broadcasts WM change specified

I 
6. end do; by selected production's RHS

I Figure 8.1. RAV Hypercube Rete Design

3
I
* 8-3

I



I
I

8.3 Implementation

A host program executing on the front-end host processor of the iPSC/2 provides

the user interface to the IlyperCLIPS shell. The host prompts the user for tile desired

cube dimension, the application knowledge base, and the desired run time options (see

3 Appendix F). The node program, which is executed on each active hypercube processor,

downloads from the host processor the entire initial working memory fact set and its

partition of the total production rule set. Each node then initializes and executes its local

version of CLIPS.

3 To implement IlyperCLIPS, two adaptations to the serial CLIPS shell are required:

1 ) the global select gray-code compare/exchange capability and 2) the global act broadcast

capability (from Figure 8.1). For both of these communication activities, the main design

challenge is the choice of data structure to pass as a message.

3 From an implementation-independent perspective, it seems that tile typical message

consists of a structure representing one complete rule. For the select compare/exchange.

I the structure passed by a processor node represents the top rule on the node's local conflict

set. For the act broadcast, the structure passed represents the one rule selected globally

for firing.

Unfortunately, the data structure for a CLIPS rule is a multi-directional, multipli-

linked list of multivariate structures. Because the many pointers employed in such a

structure on a given processor have meaning only in the context of that processor's local

memory, the rule structure must be par I and the actual structure values put into an

array to be sent to other processors. Once received, such an array must again be parsed,

reassembled into CLIPS rule form, and processed.

Parsing, passing, and reassembing of rules is not chosen for the lIyperCLIPS imple-

mentation for several reasons. First, the raw complexity of parsing and reassembling a

3 rule structure is prohibitive. Second, the communication time required to send such a po-

tentially large message, added to the computation overhead time required for parsing an(I

3 reassembling the rule structure, does not suggest efficient use of processing time. Third,

a rule structure in CLIPS is tightly entwined in the local Rete network, including data

I
8q-4I



I
U

describing the rule's dependencies among other rules in its network. Passing of a complete

rule, then, entails passing large portions of a processor's local Rete network, including data

that is probably unneeded for processing at another processor and possibly even incorrect

and corrupting if processed at another processor.

The chosen select compare/exchange design approach is to pass not the entire rule,

but a structure consisting only of the priority, or salience, of the top rule on a processor's

conflict set and the ID of the processor holding the particular candidate rule for firing.

After the compare/exchange is complete, processor 0 holds the salience of the rule to fire

and the ID of the processor where that rule resides. Processor 0 then broadcasts this

3 information to all processors, triggering the processor holding the globally selected rule to

enter a mastcr processing state while the other processors enter a Slam, processing state

for the upcoming global act broadcast.

The act broadcast design approach is for the master processor to send as messages

only the RHS actions of the globally selected rule, rather than the entire rule structure.

Because the firing of any rule ultimately results in either no action on WM or a series of

working memory element additions and/or retractions (see Chapter III), each fact addition

and retraction is broadcast as it is about to be processed on the master processor. Conse-

quently, the same addition or retraction is received and processed on the slave processors,

lagging the length of the broadcast time behind the master's processing state.

A fact string specified for assertion in the selected rule's RIIS must be built by parsing

3 the RIIS'; CT TPS fact structure, but this parsing task is much less complex than parsing

the entire rule structure. An assert message consists of this fact string and a tag specifying

an assert operation is required. A retraction specification need only consist of the integer

ID of the fact to be retracted, because all processors maintain identical copies of working

memory with identical working memory element IDs. A retract message consists of this

working memory element ID and a tag specifying a retract operation is to be performed.

3 Unfortunately, execution of the RAV expert system on llyperCLIPS resulted in slow

down compared to the serial CLIPS implementation. A two-node configuration produced

San average of only 12.6 rules fired per second, followed by 5.11 rules per second using four

* 8-5

I



nodes and 2.01 rules per second using eight nodes. These results, although discouraging,

are in keeping with the timing analysis conclusions presented at Appendix C.

Note from Appendix C that, for the HyperCLIPS design to produce speedup, the

I following two conditions must exist:

3 1. The RIISs of all production rules must affect many condition elements (CEs), or

predicates, in the LHSs of many other rules. Ideally, the average number of CEs

affected would equal the number of processors available.

2. The production rules must lend themselves to fortuitous assignments to unique pro-

3 cessors. Specifically, the production rules containing CEs that initiate processing

along non-interacting Rete network paths should be assignable to unique processors.

Inspection of the RAV expert system execution suggests that the first condition is not

adequately met. The average number of facts affected per rule firing is observed to be less

than three, with an observed range between I and 13. These few affected facts represent

I less than 0.57 of a WM that averages approximately 700 total facts during execution.

Furthermore, the facts changed due to rule firings are in turn observed to affect an average

of just over four rules each, with an observed range between 1 and 18. These four rules

represent only 1.5% of the 273 rules present in the RAV knowledge base. The small span

3 of effect per rule firing severely limits the benefits attainable through parallel processing

of the RAV expert system using production parallelism.

3 ttyperCLIPS, as implemented in this research investigation, has no mechanism to

take full advantage of the second condition for producing speedup described above and in

3 Appendix C. To the extent that the RAV rule base lends itself to fortuitous assignment of

rules to unique processors, IlyperCLIPS leaves the burden of rule assignment to the user.

3 No algorithmic process is currently available to recognize dependencies and relationships

among rules in an expert system's knowledge base and to use dependency data to drive

3 near-optimal assignment of rules to processors. Consequently, the load imbalance intro-

duced by the user's inability to assign rules to processors in a way that takes advantage

3 of production parallelism further limits the processing speed observed for the RAV expert

system using tlyperCLIPS.

3 8-6

I



I
I

8.4 Summary

I The proposed hypercube expert system shell is called llyperCLIPS. IlyperCLIPS

employs a full serial CLIPS interpret ter executing on each available processor in the iPSC/2

I multicomputer. Each iPSC/2 processor is parsed a partition of an application's total

rule set, and performs a normal CLIPS match step on the local rule set. Then a gray-

code compare/exchange of each processor's highest-salience rule (tagged with the rule's

home processor) transfers the salience of the rule to fire to the root node. After the root

broadcasts the salience and identification information for selected rule, the home processor

for the selected rule becomes the action master processor. The master drives the other

slave processors to mimic its fact assertions and retractions as the selected rule's MIlS

is fired. Execution of the RAV expert system using HyperCLIPS results in slow down

compared to the serial CLIPS implementation. The slow down results 1) from the small

span of effect produced when the RHSs of typical RAV rules are fired and 2) from the lack

of a mechanism which recognizes RAV rule inter-dependency data and uses this data to

drive assignment of rules to processors.

I
I
I
I
I
I
I
I 8-7

I



I
U

IX. Step 5: P(rformance C'ornparison Findings

In this chapter, the performance results produced in Chapters V through VIII are

I compared to the RAV expert system real-time processing requirement.

Real-time processing of the RAV is defined through interview with AFWAL project

managers (7). The current ART RAV implementation on the TI Explorer Lisp machines

executes at a rate of 15 to 30 rules per simulatcd vchicle second. The simulated vehicle

second is a unit derived to account for the processing delay introduced when the expert

system must wait for the vehicle simulator to produce needed vehicle control paramelors.

One simulated vehicle second equals approximately 2.5 actual seconds. Therefore. r(l-

time processing of the RAV entails firing rules at a rate roughly between 37 and 75 rules

per second. An estimate of 50 rules per second is plotted as the real-time RAV performance

requirement in Figure 9.1.

The plotted performance metrics produced during analysis of lower bound perfor-

3 mance, upper bound performance, and parallel Rete performance complete the remainder

of Figure 9.1. Note that the current best performance is omitted from Figure 9.1 because

it falls entirely below the lower bound.

The lower bound performance experienced by the serial CLIPS design is impressive,3 although it does fall short of real-time. CLIPS performs well for the RAV expert system

application because of the Rete state-saving feature (from Chapter III). CLIPS's state-

saving takes full advantage of the very small rate of change of working memory observed

in Chapter VIII, which is why CLIPS soundly outperformed the Shakley parallel design in

terim of rules fired per second.

The upper bound performance metric is plotted for the shown number of processors3 (N = 2d) and derived from the equation for upper bound offered in Chapter VI. The

upper bound suggests that it is reasonable to expect to achieve real-time processing of the

I RAV expert system on the iPSC/2 using HyperCLIPS under ideal conditions. However,

the model in Chapter VI does not take into account the dependencies between rules in the

I RAV knowledge base that limit the ability to achieve perfect load balance.

9
9-1

I



I

I

I

I Pu g

I 40
Processing Speed
(rules per second)

30

I 3O

* 10

1 2 4 8 16 32

Number of Parallel ProcessorsI
Legend: I - lower bound performance metric

p - proposed parallel architecture performance

g- goal performance

I u - upper bound on proposed architecture performance

Figure 9.1. RAV Expert System Performance Spectrum

I
I
I 9-2

I



I
I

The performance of HlyperCLIPS executing the RAV expert system is also plotted

in Figure 9.1. The slow down experienced by HyperCLIPS suggests, at best, that an

algorithmic mechanism is required to assign input rules to available processors in a way

3that optimizes potential production parallelism. Worst case, the slow down suggests that

the RAV expert system itself does not exhibit the inter-rule dependencies necessary to

allow a significant amount of production parallelism.

9
I

I
I
I

I

I

I 9-3

I



I
t

X. Conclusions and Recommendations

10.1 Research Conclusions

Parallel processing is a promising approach to achieving real-time processing of expert

system software. The keys to improving parallel processing performance are reducing

communications overhead and balancing task load. The major factor in both of these

goals is the proper choice of a problem decomposition.

This research goes beyond just producing a new parallel architecture design. The

performance results of this design are quantified in relation to the lower and upper perfor-

niance bounds, the current state-of-the-art design's performance, and the required real-tine

performance. This approach not only adds validity to the performance results of the new

design but also exposes the level of maturity the RAV expert sywten research has achieved

3 as a consequence of this design. This performance quantification methodology serves as a

template for other researchers performing parallel computer architecture design as applied

5 to any application.

10.2 Rescarch Rccommcndations

The findings analyzed in Chapter IX suggest that research into parallel processing

3 of the RAV expert system is still in its infancy, The speedups realized using serial CLIPS

(Chapter V) support the continued use of state-saving algorithms, such as Rete, to pro-

Scess the RAV. But the characteristics of the RAV observed in Chapter VIII suggest that

the system lends itself to very limited potential speedup due to production parallelism.I Therefore, RAV expert system research is perhaps better served by approaching paral-

lel processing from the standpoint of node parallelism, possibly using a shared-menory

3 multiprocessor (see Chapter 111).

The critical component missing during this research investigation is an algorithinic

mechanism to assign production rules to available parallel processor nodes. Such a mecha-

nism will parse rules, recognize dependencies among rules that promote production paral-

I lelism during rule firings, and use this information to assign rules to available processors.

10-1

I



I
I

The results of the timing analysis in Appendix C suggest that the assignment algorithm is

driven by the span of effect of actions in the RHSs of all available rules.

An "optimal' assignment algorithm potentially poses an NP-complete problem, an

fast execution of the algorithm may require parallel processing itself! But an assignment al-

gorithm is critical for designs, such as HyperCLIPS, that depend on production parallelism

to realize processing speedup.

Further exercise of the HyperCLIPS expert system shell, using applications more

amenable to production parallelism, is recommended. HyperCLIlPS also serves as a possiblo

tool for the development of an optimal assignment algorithm described above.

10..? Summary

Parallel processing of the RAV expert system is still in its infaicv as an area of

research. Processing of the RAV expert system using serial CLIPS executes at an inipres-

sive spood due to the state-saving Rete algorithm. But the llyper(CLIPS implementation

performs poorly for the RAV application due to the limited potential production paral-

lelism characteristic of the RAV and due to the need for a rule assignment mechanism.

Further exercise of IlyperCLIPS using applications with significant potential production

parallelism is recommended.

1
I
I
I

I
U

I 10-2

I



U

Appendix A. lobol Air i chich Backyroiid

The Robotic Air Vehicle (tRAV) is a concept under exploration 1), the Defense Ad-

5vanced Research Projects Agency (DARPA) and the Air Force Wright Aeronautical Lab-

oratories (AFWAL). TIhe concept is to create an unmanned air vehicle capable of au-

I tonomous operation. The RAV must be able to perform basic piloting skills as well as

passive terrain following, terrain avoidance, obstacle avoidance, and autonomous naviga-

tion. The mission of such a vehicle would consist of intelligent reconnaissajice or attack of

high risk. heavily defended targets. A contract wa awarded to Texas Instruments Iicor-

porated (TI) in September 19S.5 to develop a system architecture ard to demonstrate the

feasibility of some of the key componen's of such a system (2,,). TI completed its system

development and demonstration in June 1988 (12:1).

The final system architecture developed by TI is showni in Figure A.I. The RAV

system software consists of six top level modules: the Route PIlaimer, the Piloting Expert

Systei (PFS). the Vehicle Control System (VCS), the Spatial )atabase, the Intelligent

p Vehicle Workstation (IVW). and the Natural Language Menu (NIMenu) system (12:6).

This architecture includes several expert subsystems linked to a central controlling agent.

U, the Piloting Expert System (PES). The expert c-bsystems consist of the following: a

lassive Navigation module for estimating the current platform location on a digital niapi

and for generating a terrain model for terrain following; an Airspace Expert System for

three dimensional situation awareness: a Route Planner for generating the RAV flight pat h:

a Vehicle Control System for translating high level flight directives into stick and throttle

manipulations. The PES coordinates the activities of these subsystemns and is the final

arbiter of RAV responses to the environment (12:15).

3 During typical system operation, mission and flight data is entered via NLMetu

or Voice and sent to the PES. The PES sends the waypoint coordinates, including target

location, to the Route Planner, which calculates a path through tlie waypoints. As Ihe PES

executes the route plan. it responds to inputs from NLMenu and IVW vehicle siniulation

3and queries the Spatial Database. Spatial Database queries activate both the Passive

Navigation subsvsteni and the Airspace Expert System. These inputs are used to pilot

A-i

I



Nat ural Rolute
Language Voi ce Pa c
MenulPlne

fiueA.RSvstem Archtectr (17

harwar rquiemnts 'he AVsysteml sot arersdsin ahad recniuaon f

cir~~~~~ ~~~ Tea ntuetEpoeI Lis Machines nd n~ gt:lEu nn oprti

5~ ~ ~ ~~~~~~r and the. resden sfwrsusStestem Axlrcetuprt aloheA:sft7e)n

he vehli(:conro nd midla excte Imion softare. Toh crxI performs thele mateir suc ateic

h'ita l :are ruire lo onts Th 9 t em software ste s (1 a'2:9).cofiuaton

no le dg asesii fxor ee Iert L sp Mach e devoe sing coui ventiCopal owl-I edge ngIjcr%'g tech Al macies. Th e edt ogete via )ase o ie Aprac set o tAiN)

fihe l ts. Tche k nownelg a.,; l Post Oce pfacitess foloe aei es o ilal fa on t ria hi i

I sessions angnde autorcic-ids ing ti technique th ehoooy a a e o lei apracihitsedt ilriell

I .'\A-2



IAE I___EN___ VL

PE

Ic

3 Note: "En" denotes Explorer machine

K Figure A.2. ItAV System Configuration (11:10)

A-3



I
V

in an ordered fashion. The knowledge bases became hierarchical as new concepts were built

on old skills. Each level of competency was validated before moving to the next training

level (12:28).

i The knowledge representation used to develop the knowledge bases for the expert

systems is a combination of TI Dallas Inference Engine (TII)I), Automated Reasoning

I Tool (ART), and/or Lisp representations. These three tools are used to represent the

knowledge bases at three different levels of abstraction.

TIDIE was developed for the RAV project to provide a readable, high-level knowl-

edge representation for piloting rules. The TIDIE representation consists of OBJECTS.

representing the aircraft state variables: NEEDS, representing the goal to be met: and

PLANS. representing how the goal is to be met (12:12). NEEI) and PLAN macros expad

these high level structures into lower-level ART components.

3 Inference Corporation's ART is a commercial artificial intelligence shell. It provides

an inference engine for rule-based reasoning. ART also uses the Rete algorithm for pattern

matching. The ART representation consists of typical expert system RULES and facts

organized into frame structures, called SCHIEMAS (12:13). A Lisp-based version of ART

3is emploYed in the RAV architecture.

All three levels of knowledge representation are compatible. TIDIE is impleriiented in

ART rules and Lisp r-,nctions, thus allowing free intermixing of TIDIE and ART constructs

in a single knowledge base source file. Lisp was used directly for low level command moduils

like the VCS (12:12).

The TI architecture has demonstrated the feasibility and practicality of a Robotic

Air Vehicle (RAV). The entire ensemble of subsystems has proven the effectiveness of

distributed cooperating expert systems. The RAV provides a performance benchimark

for a near real-time control system (12:35). Unfortunately, current hardware support for

symbolic computing such as that used by the PES is not adequate to permit real-timne

I control of a vehicl, by an expert system (12:33).

In the final report, TI recommended three main follow-on research direction,, to

b, pursued: first, investigate how the RAV prototype would handle a more high fidelify

U A-4

I



simulation; second, investigate real-time expert systems, distributed expert systems. and

I maintenance and verification of expert systems; and, third, exienid the piloting capabilities

currently employed by the RAV prototype (12:35).

I
U
U
i
I
I
I
I
I
I
I
U!
I
I
U A-5

I



3
I

Appendix B. Paralhl Proccssing Archihcturs

Computer architectures may be classified by many methods, or taxonomic s. FlyIn's

I Taxonomv is based on the concepts of instruction stream and data stream (8:1901). An

instruction stream is a sequence of instructions performed by a computer. A data stream3 is a sequence of data used to execute an instruction stream.

The Single-Instruction stream, Single Data stream (SIS1)) category includes riost

serial computers. The Single-Instruction stream, Multiple Data stream (SIMI)) cat,,.ory

includes processor arrays. The Multiple-Instruction stream, Multiple Data stream (MINID)

category contains most multiprocessor systems. Finally, no computers in coinimion u.,

today belong in the Multiple-Instruction stream, Single Data stream (MIST)) category

(3-1:16). This leaves SIMI) and MIMI) as the two main categories of parallel processors.

3 As implied by the label, an SIMI) parallel system has multiple processors operating

the same instruction synchronously on separate data streams. Examples of SIMI) archi-

tectures are the ILLI.AC IV and Connection machines. The MIMD parallel system has

multiple processors capable of operating on multiple data streams with different opera-3 tions asynchronously. Examples of MIMD architectures are the Butterfly and the il"SC

hypercube (20).

There are many possible processor organizations, or int( rconntction n thod,, for par-

allel architetures. The following are examples of commonlv used interconnection met hods

3 (3 1:2!5-29):

9 Mf., rih tuork - Processors are arranged into a q-dimensiollal lattice. Corn mu nicatio

is possible only bt ween neighboring nodes, thus interior nodes can communicale with3 2q other processors (see Figure B.I).

Pyramid nuwork - Processors in a pyramid network of size p form a complete 4-3 ary rooted tree of height log4 p augmented with additional interprocessor links that

allow processors in every tree level to form a two-dimensional mesh network (see

Figure B.2).

1 B-1

!



!
!

" Shuffle-Exchange Nctwork - This network consists of ii = 2 k processors and two kinds

3 of connections: shuffle and exchange. Exchange connections link processors whose

numbers differ in their least significant bit. The shuffle connection links processor i

with processor 2i modulo (n-i) (see Figure B.3).

* Buttcrfly Vctwork- (k+l)2k processors are divided into k+1 rows, or ranks, contain-

ing n = 2k processors each. Each processor has four connections to other processors

(see Figure B.4).

" Hypxrcubf (Cub-Connectcd) V~tu'ork - A cube-connected network is a butterfly with

3 its columns collapsed into single processors. The network consists of n = 2k processors

forming a k-dimensional hypercube. Two processors are adjacent if their labels differ

£ in exactly one bit position (see Figure B.5).

I
I
I
U

U Figure B.1. 2-D Mesh Network (34:26)I
Another important feature of a parallel architecture is the memory organization

3 employed. Most reported parallel SIMD architectures assume a shared global memory

among all processors (34:30). MIMI) architectures, however, can be further classified as

I multiprocessors or multicornputers based on the memory organization.

An MIMD multiprocessor is characterized by shared memory among the processors.

In a tightly coupled multiprocessor, these processors work through a central swihching

mechanism to reach the shared global memory. A loosely coupled multiprocessor is also

U B-2U



FiueB2 ie1 ya i ewr 3:7

aI
<I3-

FiueB3 -oeSuUe7cag ewr 3:7

B-



U<

FiueB.I-Nd utefyNtok(,:8

I2
U0

I9

Figre ... 42-Nodyeruel Network (34:28)



£
I

characterized by' a shared address space, but this shared address space is formed by corn-3bining the local memories of the processors (34:35-38).

An MIMD multicomputer has no shared global memory. Instead, each processor

has its own local memory. Process cooperation occurs either through message passing or

through memory shared between pairs of processors (34:41).

Two parallel architectures are of interest in this research investigation. Tile first is3 a network of four Texas Instruments (TI) Explorer II Lisp machines. The second is the

second generation Intel Personal Supercomputer (iPSC/2). Each is an MIMD architecture.

3 The first host architecture of the RAV expert system consists of a network of four

TI Explorer II Lisp machines. They form a loosely coupled system. Each system has itsI own local memory and a common bus structure connects the systems. All syslens share

a central file server. Each of the four systems are very powerful Lisp processors.

3 The second architecture of interest is the Intel iPSC/2 hypcrcube. This system can

be configiired with up to 128 processor elements (PE). The iPSC/2 is a multicoinputer3 made up of Intel S03SG processors. The flexibility of this system, along with its ready

accessiilt.v, make it a useful tool for this study.

IExamples of the previously discussed architectures are given in Figure 13.6. Only the

TI Explorer Lisp machine and the iPSC/2 are evaluated as part of this research investiga-

tion duo to availability.

I

I
I

I



I
I
I

I
I

SIMD Processor Arrays: ILLIAC IV
Connection Machine

Burroughs PEPE

IBM GF-11
ICL/DAP

3 MIMD Multiprocessors: C.mmp (Carnegie-Mellon)
(tightly coupled) Encore MultimaxISequent Balance 8000

MIM D Multiprocessors: Crm* (Carnegie-Mellon)
(loosely coupled) BBN Butterfly

MIMD Multicomputers: Inte, iPSC
Ametek S/14

NCUBE/10

I Figure B.6. Summary of Architectures (19, 34:1350,31-41)

B
I
I
a B -6

I



Appendix C. Timing Analysis of RAV Expcrt Systhn

One key to the amount of processing required to perform a state update in a Rete

Inetwork during the match step is the number of co-dition element, (CEs) present near

the top of the network. Each CE may be considered an initiator of a path or set of paths

Iinto the Rete network. As a network path(s) initiator, a CE defines a fixed niumber of

productions that can potentially be affected by the information flow down that path(s). A

3 CE's span of effect is important to this timing analysis because match speed-up avaiiah&

from production parallelism is proportional to the average number of affected produclions1 ( 11:5.t1).

When a working memory element (WME) change is input at the root node of a Rete

network, the information flow resulting from the processing of that WME change passes

through one or more CEs and down through some number of nodes in the network. Cali

the time from the initial receipt of a WME change at the root node to the termination of

information flow caused by that WME change the match filter timc. Call the time required

by the interpreter to select a production from the updated conflict set the local selct tilic.

Similarly, call the time required by the interpreter to evaluate the RItS of the selected rule

and to send it to the root node in the network the local act tine.

3The term "local" implies that the specified activity is performed using the data (i.e.

conflict set, Rete network) that are saved in the memory that is local to the proces.,or

3 running the interpreter. Although this definition is assumed for serial processors. it is

useful later in the context of multicomputers.

SConsider the very simple exp:aple case in which the WME change input at the root

ndo of the Rete net ~ork matches only one CE at a subsequent t-const nude. A pro(luction

5 system interpreter implemented on a serial processor will complete a match-select-act cycle

in the amount of time defined by the following (in order-of notation):£
0 ( match filter time + local select tiie + local act time

I
I C-I

I



I

I
In the opposite extreme case, assume a WME change input at the root node matches

all of the CEs at the su)sequent t-const nodes. A serial production system interpreter will

complete one match-select-act cycle in the following time:

O([sum 's ' (match filter time)] + local select time + local act time

INow cons er the production system implemented on a miiticomputer configured as

in the design presented in this research investigation. Call the time required by processors

to perform the gray-code compare/exchange of productions in the select step the sclkct

compaar/c."chang( fiint. Call the time required to broadcast to all other processors the

production selected for firing the act broadcast timc.

5 Returning to the simple example case in which the WME change input matches only

one ('E, the parallel production system interpreter will complete one cycle in the following

3timie:

IO([rnaxpE (match filter time + local select time)] +

select compare/exchange time +

3 act broadcast time + local act time

This equation states that the processor, or processinrg clement (PE), that requires

the most time to update its local Rete subnetwork and to select a production from its local

3 convfict set will make the processors that have completed these steps wait before enterilig

the select compare/exchange step. Of course, the processor that hosts the Rete subnetwork

3 that holds the single affected CE will experience the maximum match filter time. Note

that the local act time does not appear as maxpE (local act timc) because all processors

5 are assumed to enter the local act step synchronously as a result of the act broadcast and

because the local act step will require the same amount ot time on each processor.

3 omparing the results of serial versus parallel processing of the single-affected-CE'

case, both systems experince the same match filter time and the same local act time.

5The parallel system could experience a slight savings in local s',lect time because the

affcctpd Rete suhnetwork will always have a coqflict set smaller than -'r equal in size to

I C-2

I



I
I

that of the whole Rete network on the serial system. Consequently, the processor - i3 the parallel system that hosts the affected Rete subnetwork could potentially perform its

local select faster than could the processor in the serial design. But this potential local

3 select time savings is sure to be overcome by the communication cost incurred during select

compare/exchange and act broadcast. This finding suggests that the nulticoiputer design

is not as fast as the serial processor design when processing WME changes that affect very

few CE,.

3 Considering the example case in which the WME change input matches all CEs, the

parallel production system interpreter will complete one cycle in the following time:

O({maxpp~surPESCL, (match filter time + local select time)]} +

I select compare/exchange time +

3 act broadcast time + local act time

Again, some processor (PE) will require more time than the others to process all of

the Rete subnetwork updates required by its many CE matches and to select a production

from its local conflict set The other processors will wait for that processor to finish before

entering the select conpare/exchange step.

Comparing the resllts of serial versus parallel processing of the all-CE -affected case.

both systems experience the same local act time. The parallel system could experience

a substantial savings in match filter time if th, workloads distributed to the available

processors are of equal computational complexity. Assuming this good load balance, the3 surn of the match filter time saved and the local select time saved in parallel design can

reasonably be expected to be greater than the sum of the select compare/exchange time

i iicurred and the act broadcast tine incurred. This finding suggests that the multicomputer

design can be expected to perform faster than the serial processor design when processing

5 WME changes that affect many uniquely assignable CEs.

The conclusion reached by this analysis is that the performance of th' parallel pro3 diction system design proposed iH this research investigation depends upon the knowledge

I -3

I



!
I

base of the applicatio, of interest. For this design to perform well, the application pro-

3 duction system must exhibit the following qualities:

1 1. The RHSs of all production rules must, on the average, affect many' CEs. Ideally,

the average number of CEs affected would equal the number of processors available.

3 '2. The production rules must lend themselves to fortuitous assignments to unique pro-

cessors. Specifically, the production rules containi.ag C(Es that initiate concurrently

3 filterable Rete network paths should be assignable to unique processors.

I
I
I
I
I
I

I

I

I
I C

I



I
I
3 Ap)endix I). Parali 1 R.4 1' Expcrt Syslt Prograin

The appen(ix presents tho actual C language code implementing the IlyperCLlIPS

shell. Note that oilv tHhe original CLIPS routines adaptv for !.?perCL}!S art inclhidd

h're. Routines not shown in this appendix are used in HyperCLIPS in their uriginal CLI'S
I fol Il.

-- DATE: 11/17/89

3 -- VERSION: 1.0

3 -- TITLE: CLIPS Toader for iPSC!2 Hypercube

-- FILENAME: HOST.C

3 -- AUTHOR: Capt William A. Harding

-- COORDINATOR: R. Norris

5 -- PROJECT: Hypercube Expert System Shell - Application of

-- Produ.cion Parallelism (Thesis)

-- OPERATING SYSTEM: UNIX System V/386 R3.0 (for iPSC/2)

-- LANGUAGE: C

3 -- FILE PROCESSING: Compile and link with chost.def, stdio.h

-- CONTENTS:

3 -- main - executive module

-- power - exponentiation subroutine

FUNCTION:

This program prompts the user for the dimension of the cube to be

-- used for the expert system shell. It then loads processors ;vith

-- the knowledge base represented in user-entered files. The host

3 -- chen prompts for the run limit (number of rules to fire before

-- stepping) and the watch option desired (to display rulcs, facts,U
lI-



U
I
3 fp = fopen ("watch.out","w");

fprintf (fp,"\nCLIPS EXPERT SYSTEM SHELL FOR THE iPSC/2 HYPERCUBE\n\n"

fpri.Lf (fp," Written by Capt William A. Harding");

/**************************************************** *************

3 /* Get cube dimension from user and send to nodes */

I************************************************I
printf (" Enter cube dimension (1-5): ");

3 scanf ("'d" ,&dim);

csend (DIM-TYPE, &dim, sizeof(dim), ALL-NODES, NODEPID);

3 fprintf (fp,"\n\n** Dimension d\n",dim);

I /**********************************************************************

/* WM loop: PrompL for the names of files holding facts and templates */3 /* and send these so each node can initialize its copy of working memory*/

/* The loop waits for the nodes to load a file before requesting another*/
I /**************, *********************************

3 dummy = 1; /* dummy - no meaningful value */

num-nodes = power(2,dim);I
printf ("\n Enter fact file names for all processors: ");

5 printf ("\n -> ");

scanf ("As", sname);

5 while ((infile = fopen(sname, "r")) != NULL) {

fclose(infile);

3 for (i = 0: i < num-nodes; i++) {

I) ,

I



U
I

-- or all affected during the run). Run times are then collected from3 -- the nodes, as well as any "watch" results, and these are displayed.

3 #include "/usr/ipsc/lib/chost.def"

#include <stdio.h>I
#define NODEPID 1 /* Node process id

3 #define HOSTPID 1 /* host process id */

#define ALL-NODES -1 /* all active nodes in the cube

3 #define ALLPIDS -1 /* all active processes in the cube */

#define DONE-TYPE 0 /* type of done message */

3 #define DIM-TYPE 10 /* type of dimension message

#define FILE-TYPE 20 /* type of filename message */

#define LIM-TYPE 30 /* type of run limit message */

#define ITEM-TYPE 40 /* type of watch item message

3 #define ACT-TYPE 50 /* type of watch action value message */

#define FIRE-TYPE 60 /* type of rules fired message

#define TIME-TYPE 70 /* type of time message

#define REPORT-TYPE 80 /* type of report signal message

#define GO-TYPE 90 /* type of synch start message

#define TIME-SIZE (sizeof(long)) /* size of time message in bytes */U
main ()

int dim, /* dim3nsion of cube

3 numnodes, /* number of nodes in current cube dim */

i, /* iteration counter (thru processors) */3 dummy, /* dummy variable (done messages)

run-limit, /* run limit for desired run

3 watch-action-val'e, /* t'-ns watch option ON or OFF */

U I)-2

I



U
I

check-firings, /* checks consistency of rules fired */

3 start, /* signifies Ist node's responses coming*/

rules-fired; /* number of rules fired during run */U
float longest-time, /* maximum run time of all nodes

3 rules-per-sec; /* run's average rules fired per second */

3 long run-time; /* run time returned from a node */

3 char fname[15], /* loadfile name */

sname[15], /* setfile name

3 watch-item[15]; /* item to display using watch option */

3 FILE *fp, /* file pointer */

*infile; /* input file pointer */I
3 /* Load the cube */

/***********************************************************************I*U
setpid (1:C TPID);

3 load ("node", ALL-NODES, NODEPID);

/* Print welcome message */

3 printf ("\n CIIPS EXPERT SYSTEM SHELL FOR THE iPSC/2 HYPERCUBE\n\n"

3 printf (" Written by Capt William A. Harding\n\n");

I



I

3 fp - fopen ("watch.out","w");

fprintf (fp,"\nCLIPS EXPERT SYSTEM SHELL FOR THE iPSC/2 HYPERCUBE\n\n"

fprintf (fp," Written by Capt William A. Harding");

3 / *** *** ************************************************4************ *** **

3 /* Get cube dimension from user and send to nodes

/********************************************************* ********** *****I*I
printf (" Enter cube dimension (1-5): ");

3 scanf ('/d",kdim);

csend (DIM-TYPE, kdim, sizeof(dim), ALL_NODES, NODEPID);

3 fprintf (fp,"\n\n** Dimension d\n",dim);

I /*************************************************************************

/* WM loop: Prompt for the names of files holding facts and templates */

3 /* and send these so each node can initialize its copy of working memory*/

/* The loop waits for the nodes to load a file before requesting another*/

5 dummy = 1; /* dummy - no meaningful value */

num-nodes = power(2,dim);I
printf ("\n Enter fact file names for all processors: ');

3 printf ("\n -> ");

scanf ("s", sname)

3 while ((infile = fopen(sname, "r")) != NULL) {

fclose(infile);

3 for (i = 0; i < num-nodes; i.+) {

I I)-4

I



csend(FILE-TYPE, sname, sizeof(sname), i, NODE-PID);3 crecv(DUNE-.TYPE, &dummy, sizeof(dilmmy));

3 ~ ~~printf (- )

scanf ("., sname);

fclose(infile);

5 for (i = 0; i < num-.nodes; i++){

csend(FILE-TYPE, sname, sizeof(sname), i, NODE-YID); I

3 1* PM loop: Prompt for each node's rule file niames and send these to *

1* the nodes so they can access the files to load their rule bases. *

3 /* The loop waits for the node to load a file before requesting another.*/

for (i = 0; i < num-nodes; i++){

3 printf (\n Enter rule file names for processor 7/d D ,i;

printf ('An -> ");

3 scanf ("*.s", fname);

while ((infile = fopen(fname, "r")) !=NULL){

5 fclose(infile);

csend(FILE-TYPE, fname, sizeof(fname), 1, NODE.PID);

3 crecv(DONE.TYPE, &dumnmy, sizeof(dummry));

printf C' -> "I);

3 scanf (us/ri fnaine);

3 fclose(infile);

caend(FILEJ-YPE, fname, sizeof(fname), i, NODE..PID);

D-



I
I

/* Prompt for run options (run-limit, watch-item, watchaction-value) */

3 /* and send these to all nodes. This serves as the nodes' "GO" signal. */

/*************************************************************** ******* **I
printf (\n Enter run limit (-I for no limit): ");

I scanf ("%d", &run-limit);

csend(LIMTYPE, &run-limit, sizeof(run-limit), ALL-NODES, NODEPID);

printf ("\n Enter watch item (lower case): ");

I scanf ("%s", watch-item);

csend(ITEM-TYPE, watch-item, sizeof(watch-item), ALLNODES, NODE_PID);

printf ("\n Enter watch-action-value (i-ON, O-OFF): ");

3 scanf ("td", &watch-action-value);

printf ("\n\n Executing... \n\n");

3 csend(ACTTYPE, &watch-action-value, sizeof(watch-action-value),

ALL-NODES, NODEPID);I
for (i = 0; i < num-nodes; i++) {I

crecv(DONETYPE, &dummy, sizeof(dummy));}

csend(GOTYPE, dummy, sizeof(dummy), ALL-NODES, NODEPID);

*G* *t ******** *** ** ******* ****************************d*p*** * **r*e*
/* Get run data from nodes, compute and display the results. *

I/ **************************** ******************************************

U

I



U
I

longest-time = 0.00;

start = 1; /* true - first time thru */

3 for (i 0 O; i < numnnodes; i++) {

3 csend(REPORTTYPE, dummy, sizeof(dummy), i, NODEPID);

3 crecv(FIRETYPE, &rules-fired, sizeof(rules-fired));

if (start == 1) {

3 check-firings = rulesfired;

start = 0; /* false - first time only */

else {

3 if (check-firings != rules-fired)

printf ("\n** ERROR -> rules fired discrepancy **\n");

3 crecv(TIMETYPE, krun.time, TIMESIZE);

if (longesttime < (float)runtime/1000.00)

longest-time = (float)run-time/1000.O0;

U
rules-fired--; /* subtract out setup rule firing */

rules-per-sec = (float)rules-fired / longest-time;

printf ("\n** Run Completed after %d rule firings\n", rules-fired);

fprintf (fp,"\n** Run Completed after d rule firings.\n",

rules-fired);

I I)-7

p



printf ('\n** Total Run Time = %0.5f seconds.\n", longest-.time);3 fprintf (fp,'\n** Total Run Time = %0.Sf seconds.\n", longest-time);

3 printf ("\n** Average for Run = 7.0.5f rules/second.\i'

rules-per-.sec);

3 fprintf (fp,'\n** Average for Run = Y.0.5f rules/second.\n",

rules-per-.sec);

fclose (fp);

3 I* Close channels to the cube for this run

kilicube (ALL-NODES, ALL-.PIDS);

3 /* Subroutine Power

3 power(base, exp)

int base,exp;

mnt answer;

for (answer = 1; exp > 0; exp--)

answer = answer * base;3 return(answer);



1
I

DATE: 11/17/89

-- VERSION: 1.0

S-- TITLE: CLIPS Node for iPSC/2 Hypercube

-- FILENAME: NODE.C

I-- AUTHOR: Capt William A. Harding

COORDINATOR: R. Norris

S-- PROJECT: Hypercube Expert System Shell - Applying

-- Production Parallelism (Thesis)

S-- OPERATING SYSTEM: NX/2 Node eXecutive (for iPSC/2)

-- LANGUAGE: CS-- FILE PROCESSING: Compile and link with host.c, cnode.def, stdio.h,

-- msgs.h, and clips.h

l -- CONTENTS:

-- main - executive module

-- power - exponentiation subroutine

S-- FUNCTION:

I-- This program receives the dimension of the cube to be used for the

-- expert system shell and determines which nodes will remain active.

I -- It then initializes the CLIPS expert system shell and loads the

-- knowledge base from user-entered files (at the host). Each node

I-- then receives the run limit (number of rules to fire before

-- stopping) and the watch option desired (to display rules, facts,

-- etc. affected during the run). Run times are sent to the host,

-- as well as any "watch" results (savbd as a file at the host).

I#include "lusrlipsclliblcnode.def"

I)-9I



I
I

#include <stdio.h>

3 #include "clips.h"

#include "msgs.h"I
#define HOSTNID myhost() /* host node id */

3 #define HOSTPID 1 /* host process id */

#define NODEPID 1 /* Node process id */

#define ALL-NODES -1 /* All nodes' ids

*define DONE-TYPE 0 /* type of done message *13 #define DIMTYPE 10 /* type of dimension message */

#define FILE-TYPE 20 /* type of filename message

#define LIM-TYPE 30 /* type of run limit message

#define ITEM TYPE 40 /* type of watch item message */

# Idefine ACT-TYPE 50 /* type of watch action value message s/

#define FIRE-TYPE 60 /* type of rules fired message */3 #define TIME-TYPE 70 /* type of time message

#define REPORTTYPE 80 /* type of report signal message

3 #define GO-TYPE 90 /* type of synch start message

#define TIME-SIZE (sizeof(long)) /* size of time messageI
/*********************************************************************** **

3 /* Global Variables (seen also in files: engine.c and factmngr.c) */

/** *** *** **** *** *** *** ************* ******************* ************** ******I
int dim, /* cube dimension */

3 my-node, /* my node numbe- */

my-pid, /* my node process id

3 num-nodes, /* number of nodes in current cube dim */

RHS-type, /* type of action message

RUNNING; /* global flag - master rule firing node*/

I )-1o



I
U

3 long start-time; /* start time of run

3 RHS-msg my_3HS.buf; /* global msg -rule firing mechanism */

m main()

3I ************************************************************** *** *******/*

/* Local Variables

int dummy, /* dummy variable (done rr<ssages)

run-limit, /* run limit for desired run */

watch-action-value, /* turns watch option ON or OFF

msg-typal, /* message type buffer

rules-fired; /* number of rules fired during run */

long /* start-time, start time of run

run-time; /* total time of run */

3 char fname[15], / - dfile name

sname[15], /* setfile name */

watch-item[15]; /* item to d.isp~ay using watch option */

3 FILE *fi; /* file pointer */

3m ******************************************************************* ****/*

/* each node define its node number and pid */

***************D*********************************************************

I D-11

I



I
1

3 my-node = mynodeo;

my.pid u mypido;

/I**************** *********** *********************************** ***** ****/

5 /* receive dimension from host, compute number of nodes, & start CLIPS */

I ********************** ***** ***************************** ******* *** **** * *IU
crecv (DIM-TYPE, &dim, sizeof(dim));

num-nodes = power(2,dim);

if (my-node >- numnnodes) exit (0);I
init-clips();i
RUNNING = FALSE; /* no nodes firing rules yet */I

3 /* WM loo-): Receive from the host names of files holding facts/templates*/

/* and read these to initialize the local copy of working memory (facts)*/

3 /* Continue this loop for all fact file names sent from the host.

/* set-conserve("on"); on - pprule info not kept */

3 dummy = 1; /* dummy - no meaningful value */

3 crecv(FILE.TYPE, sname, sizeof(sname));

while ((fl = fopen(sname, "r")) != NULL) {

I fclose(fl);

load-rules(sname);

3 csend(DONETYPE, dummy, sizeof(dummy), HOSTNIP, my-pid);

I I)-12

I



cr6:v(FILE-TYPE, sname, Sizeof(sname));

fcluse(fl);

3 /* PM loop: Receive rule file names from the host and access the files *

/* at the host to load the local rule base. Continue this loop for

3 1* all rule file names sent from the host.

crecv(FILE-TYPE, fnarme, sizeof(fname));3 while ((fl = fopen(fname, "r")) != NULL){

f close Cf1);

3 load..rules(fnasne);

csend(DONE-TYPE, dummy, sizeof(dummy), HUST.NID, my-pid);3 crecv(FILE-TYPE, fname, sizeof(fname));

I fclose(fl);

1* Receive run options from host (run-limit, watch-item,

3 /* watch-action..value). Then reset CLIPS environment and start the run.*/

crecv(LIM-TYPE, &run-limit, sizeof(run-limit));

3 crecv(ITEM.TYPE, watch-item, sizecf(watch-item));

crecv(ACT-TYPE, &watch-action-value, sizeof(watch-action-value));

set..vatch(watch-item, watch-acticn~value);



PARALLELISN(U)AIR"FORCE INST OFRTECH RIGNT-PATTESO
AFB 0ON SCHOO(L OF ENGINEERING UACRDING DEC 89

UNCLASSIFIED AFIT/GCS/ENG/89D-6 F/6 12/7 U

IL



1.25 1.4 16

M K C >:..JyN



reset-clips()

csend(DONE-TYPE, dummy, sizeof(dulmmy), HOST-NID, my-pid);

3 ~crecv(GO-.TYPE, &dummy, sizeof(dunmy));

3 rules-fired = run(run..limit);

run-~time =mclock() start-time;

3 1/* displayfactso; *enable if test desired *

/* Send run data for this node to the host

3 crecv(REPORT-.TYPE, &dummy, sizeof(dulmmy));

csend(FIRE-TYPE, &rules..fired, sizoof(rules-fired), HOST-NID, my-pid);

3 csend(TIME-TYPE, &run-.time, TIME-SIZE, HQST-NID, my-pid);

3 /* Subroutine Power *

power (base, exp)

jint base, exp;

int answer;

3 for (answer = 1; exp > 0; exp--)

answer = answer * base;

roturn(answer);

D-1



I
U

/************************************************************/*

3 /* USRFUNCS: The function which informs CLIPS of any user */

/* defined functions. In the default case, there are no

3 /* user defined functions. To define functions, either */

/* this function must be replaced by a function with the */

3 /* same name within this file, or this function can be

/* deleted from this file and included in another file. */

3 /* User defined functions may b in-lided in this file or */

/* other files.

3 /* Example of redefined usrfuncs:

usrfuncs()

/s define-function("fu.1",'i',funl,"funl");

3 /*define-function("other",'f',other,"other'); */

I /*************************************************************I
usrfuncs ()

}U

I
I
I
I
I
I )1



I
I

3 /* HyperCLIPS Version 1.0 11/17/89 */

I /******************* *************************************

/* NOTE! : the following routines are compiled within */

3 /* "engine.c". Only new routines added for HyperCLIPS */

/* or original CLIPS routines adapted for HyperCLIPS */

3 /* are shown here. Other routines not shown here must 4/

/* still be compiled in their original CLIPS form */

3 /* within "engine.c'

************* **** *** ********************************* **I*I
/*** ********** ******************************************

3 /* "C" Language Integrated Production System */

ENrTNE MODULE */I I *******************************************************/*

3 *include <stdio.h>

3 #include "clips.h"

#include "engine.h"

3 #include "msgs.h"

#define ALL-NODES -1 /* All nodes' ids

3 $define BUFFER-SIZE (sizeof(gray.msg)) /* size of message bufflr */

#define RHSSIZE (sizeof(RHS-msg)) /* size of RHS msg buffer */I
3 /* GLOBAL INTERNAL FUNCTION DEFINITIONS */

I 1)- 16

I



intru rC)

int adetactivationsoat;

3 mt getoe-lactivationstco;

int purgagendacut;

int sritactvation-ao;

I strct atvto *get-ntativn-ato;

imt pgeange..ndao;

j mt sletangrue-fagendao;

-It globta.sctton;

3stgtsruct activation *AgetNDx-ciatiNUL;

sic n t GeNOLxCutoUnT 0;

3 sti t getxch.actiiono O;

I s~iti gtcha *currenle2 U;

3 Bti t stchange-.agenda =FS;

Ip lblslco
In e-atnrndo



I

I
sLatic int executing = FALS;

static int NULL-SALIENCE = -10001;

static int i = 0;

3 gray-msg my-msg-buf,

partmsg.buf;

int rules-fired = 0;

/* GLOBAL EXTERNAL VARIABLE DEFINITIONS */

3 extern RHS-msg wyRHS-buf;

extern struct fbind *gbl-lhsdin.-s;

I extern struct fbind *gbl-rhsbinds;

extern int dim, /* dimension of cube */

mynode, /* node number */

my-pid, /* node pid */

3 num-nodes, /* number of nodes in cube

RHStype, /* tyo% of action message */

RUNNING; /* node running flag

extern long start-time; /* start time hackI
/ ******************************** ,*******€, , *** *****/

3 / RUN: Begins execution of rules. If run limit is less than */

/* zero, then rules will be executed until all nodes'agendas*/

3 /* are empty. If run limit is greater than zero, then rules*/

/* will be executed until either all agendas are empty, the */

I /* run limit has been reached, or a rule execution error */

/* has occured. Returns the number of rules fired.

I /***D******8************************************************

I D- 18

m



I
1

run(run-limit)

I int run-limit;

{

5 struct test *commands;

struct fbind *localvars;

struct activation *rule-to-fire;

char print-space[20];

struct values result;

struct exec-fuic *exec-ptr;

RHS.msg doneRHS-buf;

5 doneRHS-buf.type = DONE;

strcpy(IoneRHS-buf.factstr, EOS);

donfRHS-buf.iridex - -1;

/, = == = == = == =*/

/* Fire rules until all agendas empty, the run limit */

1 /* has been reached, or a rule execution error occurs. */

I
EXECUTION-ERROR = FALSE;

executing = TRUE;

3 global-selecto;

3 while ((my-msg-buf.salience-of-rule != NULL-SALIENCE) &k

(run-limit != 0) &&

3 (EXECUTION-ERROR == FALSE))

{I

I I



rules..fired++;

if (run-.limit > 0) { run-limit--;}

if (my..msg-buf.chosei-riode ==my-node){

3RUNNING TRUE;

RHS-type =my-node + num-nodes;

3 /* Bookkeeping and Tracing. *

currentrule = AGENDA->rule;

if (get-.rules-watch() == ON)

sprintf(print-space,"FIRE Vl4d ",rules-.fired);

3 cl-print('wtrace" ,print-space);

cl-print('wtrace" ,currentrule);

3cl-print ("wtrace","l: 11);

print-fact-basis("wtrace" ,AGENDA->basis->binds);

3 cl~print("wtrace' ,"\n"1);

if (get-crsv-trace-vatch() == ON)

sprintf(print-space,"F %-4d ",rules-fired);

3 cl..print (wcrsv-tr' ,print-space):

cl..print("wcrsv-tr l,currentrule);3ci .print ("wcrsv~tr'1,"n)

D-2



3 /* Execute the rule's right hand side actions. *

change-agenda = TRUE;

rule-to-fire = AGENDA;

commands = AGENDA->actions;

3 local-vars = AGENDA->basis->binds;

AGENDA = AGENDA->next;

gbl-lhs-binds =locai..vars;

3 gbl-rhs-.binds = NULL;

commands = commands->arg-list;

ubile ((commands != NULL) && (EXECUTION-ERROR ==FALSE))

ge~ner' z..compute(commands,kresult);

commands = comxnands->next-arg;

3 commands = NULL;

/* Return the agenda node to free memory. *

I returnbinds(Iocal-vars);

-tri.struct(flink,rule-to-.fire->basis);

3 rtn-struct(act ivation,rule-to-f ire);

I PD-21



I
I
I *1====,

I* Tell other nodes my RHS firing is done 4/
/,= .... == ,/--- -- -- -- -- -- *

3 csend(RHS-type, &doneRHS-buf, RHSSIZE, ALL-NODES, mypid);

RUNNING = FALSE;

I else {

slave-run();I
I /( I=

/* Remove retracted facts, ephemeral symbols, */

/* variable bindings, and temporary segments. */

I
rmv-old-facts();

5 rem-eph-symbolso;

flush.bind-listo;

flush-segments();

/* Execute exec list after performing actions. *I

j exec.ptr = exec-list;

while (exec-ptr != NULL)

I
I

I, •lI



I
K

'exoc _ptr ;ip)();

3exec-ptr = exec-ptr->next;
}I

global-select);

I executing = FALSE;

EXECUTION-ERROR = FALSE;

return(rlas_.f:red);

}I
/* Global-Select: Sends saiiencc of top rule on local */

/* AGENDA for comparison. Receives salience of RHS */

/* to compute and id of node holding selected rule */

3 global-select()

{

Sint partner-node,

count;

if (rules-fired == 1) { start-time = mclocko; } /* start time hack */I
if (AGENDA == NULL) {

3 my-msg-buf.saience-of-rule = NULLSALIENCE;

}

j else {

my-msg-buf.salience-of-rule = AGENDA->salience;

1) 2:3

I



my-msg-.bufchosen-node =my-node;

jDo gray-code compare-exchange down to node 0

for (count =0; count < dim; court++){

partner-node = wet-partner-node(my-node, (pover(2,coun:">;

£ if (my-node > partner-node)

csend' my-node, &my-msg-buf,

BUFFER-SIZE,

5 partner-node, my-pid);

crecv~paitner-node, &part-msg-buf,

3 BUFFERSIZE);

if (partmsg~buf.salieice..of~rule >

I mymsgbuf.salience-of-rule)

{my~msg~buf.salience.of~rulo =

I part-msg-buf sal iencecf-rile;

my-msg-bufchosen-node = part~jnsgbuf.chosenj-.ode;

/* broadcast overall best msg to all -'cdes



I if (my-node !=. 0){

crecv(O, &myjnmsg-buf, BUFFRSIZE);

else{

3csen d(O, &nyMSg~Uf , BU 1FFERSIZE, ALU-NODES, mypid

I ~/' Get-_Partner-_Nnde: Returns gray-code partner node for message passIng .

Ige'tp, rtnernode (this~node, ovau)

int this-node,

I xor-value;

I mnt binary-code;

binary-code = (gray(this-node)) -(gray(xor-value));I return(ginv(binary-code));

5 1* SLAVE-RUN: Receives assertion/retraction to perform from chosen node *

I slave _runC)

I atr-uct fact *ptr;

int 3y.RHS-type;

1) 2)



myRFHS-type = my-msg..buf.chosen-ncoie + num..nodes;

3 crecv(my-RHS-type. &my-RHS-buf, R3S-SZh);

while (my-RHS-buf.type != DONE){

switch (my-RES-baf.type) T,

case ASSERT :a-sert(myRHS-.buf.fact.str);

if (rules-fired == 1) {

priritf("IY~d:\"/.s\"\n", my-node,

myRFHS-buf.fact-st-);

treak;

case RETRACT :if ((pt- = pt&..to(my_.RHS..buf.index)) NULL)

{retract..fact(ptr);

break;

default :printf("E7RROR in switch stmnt type\n"); break;

crecv(my-RHS-type, &my-RHS~buf, RHS.SIZE);

1PTR-TO: Returns pointer to the fact with the specified index

struct fact *ptr-to(index)

FACT-ID index;

otruct fact *ptr;

ptr = get-next-fact(NULL);

U I1)- 26



I
while (ptr != NULL)

if (ptr->ID == index)

{ return(ptr); }

ptr = get-next-fact(ptr);i
return(NULL); /* fact not found */I

/* HyperCLIPS Version 1.0 11/17/89 */

i/ ************ *** ****************************************/

/* NOTE! : the following routines are compilad within */

/* "factmngr.c". Only new routines added for */

/* HyperCLIPS or original CLIPS routines adapted for */

5 /* HyperCLIPS are shown here. Other routines not shown*/

/* here must still be compiled in their original CLIPS */

/* form within "factmngr.c"

/*********** **************************U
/******************************************************/*

/* "C" Language Integrated Production System

1* FACT MANAGER MODULE */I /******************************** *************************

*include <stdio.h>

*include <string.h>I
#include "setup.h"

*include "msgs.h"

i D-27

U
In a l inm i i m



#include "clips.h"

3 #include "scanner.h"

$define ALL-NODES -1 /* All nodes' ids */

#define RHSSIZE (sizeof(RHS-msg)) /* size of RHS msg buffer */I

if /* GLOBAL INTERNAL FUNCTION DEFINITIONS */

I
struct fact *get-el();

5 struct fact *add-facto;

char *build-stro;I
/****************************************/*

/* GLOBAL EXTERNAL FUNCTION DEFINITIONS */

/******************************************U
extern struct draw *add-symbol();

extern struct element *fast-gvo;

extern struct pat-node *network-pointer);

i extern char *symbol-string(;

I/ ***************************************/*

/* LOCAL INTERNAL VARIABLE DEFINITIONS */

static struct fact *garbage-facts = NULL;

static struct fhash *fact-hashtable[SIZEFACTHASH];

static int watchfacts;

U I)-2

I



I
static !truct fact *factlist;

static struct fact *lastfact;

static long int ID;

static int change-facts = FALSE;

/* GLOBAL EXTERNAL VARIABLE DEFINITIONS */

extern int my-node,

my-pid,

RHS-type,

RUNNING;

extern RHS-msg myRHS-buf;

extern struct fbind *gbl-lhs-binds;

extern struct fbind *gbl-rhs-binds;

extern struct funtab *PTRGETVAR;I

/* RETRACT-FACT: Retracts a fact from the fact list given a */

i /* pointer to the fact.

retract-fact(fact-ptr)

struct fact *fact-ptr;

FACTID fact-num;

struct fact *temp-ptr;

struct match *match-list;

3 char print-space [20];

UD-29

I



/* Check to see if the fact has already been retracted. *

if (RUNNING TRUE)

temp..ptr =fact..ptr;

my..RHS.buf.type RETRACT;

3 my-RHS-.buf.index =temp-ptr->ID;

Btrncpy(my..RHS-buf .factstr,EOS,

5 strlen(my-RHS..buf.fact-str)) ;/*not used*/

isend(RHS..type, kmy-RHS-buf, RHS.SIZE, ALL.NODES, my-pid);

5 temp..ptr = garbage-facts;

while (temp-ptr =NULL)

if (temp-ptr fact..ptr)

3 { return(O); I

temp-ptr = temp-ptr->next;

/* Show retraction if facts being watched. ~

fact-.num = fact..ptr->ID;

3 if (watch..facts ==ON)

DI3



3cl-print("wtraceI" I<== 1)

show-.fact("wtrace" ,fact-ptr);

cl..print('utrace. ,'\n');

if (get-crsv-.trace-vatch()o ON)

clprint("wcrsv-tr" R I)3 sprintf(print-space, "7-51d ".fact..ptr->ID);

cl..print('wcrsv-.tr",print-space);3 print-element("wcrsv-tr",&(fact-ptr->atoms [0]));

cl..print('Iwcrsv..tr" ,\n9

I changefacts = TRUE;

/* Delete the fact from the fact list. *

3 del-.hashfact(fact-ptr);

/* Save the list of pattern matches. *

match-list = fact-ptr->list;

3 if (fact-ptr ==last-fact)

f last-.fact =fact..ptr->previous;}

if (fact-.ptr-previous == NULL)

KD- 31



I
/* Delete the head of the fact list. */

3 factlist = factlist->next;

if (factlist != NULL)

3 { factlist->previous = NULL; }

}

n else

{

3 / Delete a fact other than the head of the fact list. */

fact-ptr->previous->next = fact-ptr->next;

3 if (fact-ptr->next != NULL)

{ fact-ptr->next->previous = fact-ptr->previous; }

temp-ptr = garbage-facts;

garbage-facts = fact-ptr;

5 fact-ptr->next = temp-ptr;

i /, ==:==:==:=,

/* Loop through the list of all the patterns that */

m /, matched the fact.

/ *==---------------------------------------------I
match-retract(match-list,fact-num);I

3 /* Remove all activations that contain this fact */

/* from the agenda. */
m /,=:=:======----------------------------------*

3 purge.agenda(factnum);

m D-32I
Im••



I
return(l);I

I
******************* ** ********* ******************************** *****

5 /* ADD-FACT: Places a fact onto the end of tnt fact list and calls */

/* compare to filter the fact through the pattern network. Returns *1

3 1* null if the fact was already in the knowledge base, and a

/* pointer to the fact if it was not in the knowledge base.

S*** ************************* *********************************** *** *

struct fact *add fact(newfact)I struct fact *new fact;

{

5 int hashvalue;

struct fact *tempfact;

char print-space[20];

I /* :---:-:---::-::-----:-------:--:----:--:---::-::--:--:-- :

/* If fact assertions are being checked for duplications, */

3 /* then search the fact list for a duplicate fact.

3 hash-value = hash-fact(newfact);

if (fact.exists(new-fact,hashvalue) = )

{ rtn-el(new-fact);
return(NULL);

I D-33I



I
m

I if (RUNNING == TRUE)

{ temp-fact =newfact;

build-str(temp-fact);

myRHS-buf.type = ASSERT;

myRHS-buf.index -1; /* not used */

send(RHS-type, &myRHS-buf, RHSSIZE, ALL-NODES, my_pid);

add-hash-fact(new_fact,hashvalue);

n , -------------------------------------------------- /

I. + fact to the fact list. Set the ID for the */

/* fact and install the symbols used by the fact in */

/* the symbol table. ,/

I/----------------------------I
new-fact->next = NULL;

new-fact -iit = NULL;

new-fact->previous = last-fact;

if (last-fact == NULL)

{ factlist = new-fact; }I else
{ last-fact->next = newfact;}

Ilast-fact=ne-at
IID++;

new-fact->ID = ID;

fact-install(new-fact);

D-34

I



/* Indicate the addition of the fact to the fact *

I /* list if facts are being watched.

if (watch-.facts == ON)

U1pit"tae11=
I show-fact ("wtrace",new-fact);

cl..print("wtrace' ,

3 if (get-crsv-trace-watch() ON)

3 c1-.print('wcrsv-tr" ,"AS "1);

sprintf(printspace,"%-Sld C' ,new~fact->ID);

cl-print ("wcrsv-tr" ,print-space);

show-elements("wcrsv-tr" ,new-f act);

3 cl-print("wcrsv-tr",">))

c1-Print ("wcrsvtr1'"\n

3 change-.facts = TRUE;

/* Filter the fact through the pattern network. *

3 ~~~~j .iare',new-fact,new-fact->atoms,network.oneO1OULNL)

3 )3.5



I return(new-f act);

/* Build..Str: *

char *build-str(fact-ptr)

I struct fact *fact-ptr;

f3 strxict element *sublist, *elem-ptr;

char *num-to-stringo;

I mt length, i

1 length =fact.ptr->fact-length;

sublist =fact..ptr->atoms;

strncpy(my-RHS-buf.fact..str,"",strlen(my-RHS-buf.fact-str));

for (1 = 0; i < length; i++)

elem-ptr = ksublist~iI;

if (elem-ptr->type == NUMBER)

strcat (my-.RHS-buf fact-str,

Inum_ tosrn~lmpr>a~vle)
I else if (elem..ptr->type == WORD)

D)-363



I strcat (my-RHS-.buf fact-str,

symbol-string(elem-ptr->val .hvalue));

strcat(my..RHS..buf.fact-str, \ )

Iif (i +1! length)

{strcat(mv RHS-buf.fact~str, ") }

D-3



Iw

1 (,(T21 E rczla S)ttn

3Ath.ens , GA 30602

'(171 S42-K26S

I xf, IlI pfr( 1II") a. a 1 iiala otr nyptrl Yttrii sholl. Iho iI's)( ',2 f,1101

it F- 'i'trs fr 11, , )d 'j lprt' lo Ow -a me ll andi Itads lienod 114 l lprttt-' F'-Fi .>-f ii ( l .

3 l i i- ,,i( h il N4 1"Irt i I [ in it, tlil 1 ri i ( 'm, .A ft or t hen re -t' tit Lg I1 sp% ; r( ' ,11 S a :d

eit i ,a'il(z ti-rim u-im &' ojwI 1jTi-. III( niodos start (1ff sln~irmtnitim-is evttiitiliI lh

3r i I , h ~t i'; n I lIit ii t ,h -'I- t a( (Vt]'1v. ' h d iOtical 'Aorki iit meinttrYI III rnajirt t i

I. yTpr'I II'Uir 1( o/f [r# Fri tio

3 'The' Iasin ;trtaluci,t- Yxtm algorithn 1,, exteculted bY Ilvin'r(TIIS as a MNiati-

-\t'nA( r_ s lit tlt ftii,,winig ttrtr:



wh.1ich are ~ Ivi iJs f it I. f - I Irk I I

Sa t Ifi ed [r, d ,l 1,I ' . i Nt lr n l ie~ ~I r

3The start riilt I- 1:140( h.d iil-rA I'w'v t11 [I~ h i 'if o h S.

f i ; i i i f1 )r r'. pr duth i rule it I ruLI

t t ",~t 1111 r i t v; -c 1" 1 I r feKl.l)T U;l l

I t. 1i~ pv T_~ itd II) I r ai '2 K l

r I r 1 r i fipi - ;

the tii 'n ro er t ? all Tl~ )f efl, n~ I ac I f if I

3r wi-e( r oxed fii ino/l of it n;j w)nir ro r ,nv. I

a 1. o I r f l a ter iation c I IIijr is 4e , al r iI i ~ r *' aK 7 -3 th I se r. I ctssil ermti I t r ul ftirt - tcub h ii .t i

OtI t fa prcess tor/ hii t h f t Il ;.lit e Ae Io rtle kn II r .IITT rt

3or t ho nm 1 ImI It hav ig been1 reachiel. Ifw I tenril 1 tti;0 1H I

iSlop 1 it chi

3 .As rrent iiodi above., IlYvpen( I' 1 1S I uhve lopod 1 t~i~ I ; II' a- t.'-r

1) rograT . TIhe lioo ido notle programts r'ila-ev th lo(rwtil thaW nil p i- i t-i i ' -*

I , 1)S . To rmtai nt ;Ii i IAs, Itii J fth se f r I ; l (I II'S n rdt laIt fI It I~i;\ I T A
t11 j

FK 2



possile, iiyperCLIIPS is accompl ishied using minimal adapt at.. io. oforiginal C(LIPJS Soilrco

coe3pcfcly nytern otn iCISfl "enginec- ) arnd thle add-jact() anid

ftract-fact() routines (in CLIPS file -factmingr.c" ) are altered from their original serial3 representation. Some extra service rouitinies are added to these same two files to iiillemienit

11 'vperCLIPS (see the Iliper( LIPIS source code In these two files for det a;1s).

L. 5 "Ynbddirig IfyjxtrCLIPS

I ~L~Ke serial CLIPS. the Iv-perCLII'S shell may be usedl as an emnbedeod progratil.

Pie basic approach to erihbeddirig HvperCLIPS for use by another application program

on the i PSC/2 is to I1) edit the ho-st and node programs a-s needed to perform the higpher-3 levelapplication and~ 2) call llyperCTlPS using the function calls normiallY used to control

embedded CL.IPS.

3 ~ ~~A cert amin iii lim set Of fUnIction calls must be mnade when execu Iinrg I e(11

as an emibeddedl program. i rst, inlihclips() must be called prior to anY other CLIPIS

I funjctioii to initialize the lvperCLIPS environment. Second, all defl'act, deftemplate, and]

defrule statemlents (in order) must be loaded as thle initial application knowledge base using3 the loadrubs() function. Third, mcsetclips() must be called to reset the lvperCL.IPS

etivironment, thus removing all activations from the conflict set and all facts fromi workIig

3 memory, and asserting all facts listed in deffacts statments unto working miemory. Finally.

lie top- level prograr i must call run () to initiate expert system exection ( allowinrg rules3 to fire). All other CLIPS functions available when embedding CLIPS are available when

eji~E(ddi rig llvperCIAPS.

3-



3A 1)1)(' 1 dix V.I IlYjp r( 'Lir I ser" Ma AI? f/ (I

I I HypE rCLII,1S (c(111t

3 I~ypierCLI 1PS Is a paralle! expert svsteni shiell designed to( execiite Oii twhei utel S.c

oiiil Genieratin Personal Stiperconipuer (ilPS(/2). Ilyper(LIIl" is, ani adaptationi of tile(

3 se,,rial C'-Iaiiouage itit erat ed P)rodii11in Systvem (CLIP'S Versin 4.3) developed byivtlie

.\ilficial litel11lice Sectionl (MS) at N;\SA/Johinsori Space 'e litr O( .Iye lP

5Is designied as a researchi tool for deteruiijuig tie procesing spleodiip attawlde t liroiitiji

piral lel processl ig of a gi Veli expert s vst em applicationl

IMiich of tie oriinal suc code for the serial %ersjin of ('iP ue iti~ tw 1, llvr-

(hilt inilenint a ioti llerefore, Hose iterested Ii isling lvprC(l S rwjnt fir't ;wc-

I ~ ~iire 'o IS ('l1llS \ersin -1.3 is available tlirotiigli the Cotitilter Software MNiaiageniit

ai'd li1foriinationi ('enter (('OS\1IC ), whilcl Is the distrihuitioii poiti for NAAsoftw are.

F'ilr eriforilationl canl lie ohi aitied froml

3 cosmic

382 E. Broad St.

3 Athens, GA 30602

(404) 542-3265

I ' he aihiitional source code anid setupi files for IvperCIAPS are avallih ttpoit reljio't

HyperC.IPS

3 c/o Dr. Gary Lamont

Department of Computer and Electrical Engineering

3 Air Force Institute of Technology

Wright-Patterson AFB, OH 45433

['. 2 Requircmt ists for HinnnnqI~iyp (I.I

3 ~To prepare, hew I [perC I.IPS progran for c :ecitution,' you III)St first cont pile it tiing

hew (;'revnilk (i (or cortupatlinl) C'oimpiler arid link it with the IlPS(/2*s riin-titiesvset



and libraries. The iPSC/2 currently uses the UNIX System V/36 operating system oft3 the front-end host processor and Node eXecutive (NX/2) for each of the node processors

in the hypercube. Using the provided setup files mentioned above to compile and link,

I the executable file produced for the IfyperCLIPS shell is labelled host. Typing host at the

UNIX systern prompt will begin execution of ltyperCLIPS.

I Your own CLIPS-syntax expert system program must satisfy a few requirements

before it can be compiled and executed by IIyperCLIPS. \1l fact and template declara-

tions and all productions must be contained in one or more files, and no declarations and

productions can exist in the sanme file. All declarations files must be input before arny

productions files are input. To initialize tbe working memory for your execution, one of

your productions niust be a start production which has no conditions in its LIIS and which

has your desired list of initializing assertions in its RIIS. The following is a sample start

prod uct ion

(d(frui! start

I (asscrt (SWITCH (STATUS ON)))

(asscrt (SORTIE (SET MCCHORD)))

(asscrt (TAKEOFF (PLAN ROGER))))

Although this sample start production happens to also be named "start", any valid

CLIPS production name will do. When execution of your program begins, the start pro-

duction will match and fire before any other productions. If you desire not initialize your

working memory with the start production, simply leave the start production's RIIS empty.

I F..3 Irtcrfacc to ttptrCLIPS

3 ttyporCLIPS does not maintain the high-level user interface provided by CLIPS

Version 4.3. Instead, ItyperCLIPS leads the user through a series of prompts to allow3 input of some key expert system shell commands required for execution to proceed.

After the startup welcome message, the first HyperCLIPS prompt requests the de-

3 sired dimension of the hypercube:

F-2

I



I
I

3 Enter cube dimension (I-S):

I
This pronpt allows the user to specify the nurimber of processor nodes to be applied to

3 sol ition of his expert system application. Note, however, that tile response to this prompt

specifies the dzrnrisiorl of the cube, not the nutrn6cr of nodes in the cu be. For example. a

3 response of "3" causes the activation of 2', or eight, processors in the cube.

Next, HyperCLIPS asks for tihe list of file names containing the fact and template

3 declarations files. The prompt is of the following form:

I
Enter fact file names for all processors:

* ->

Ihe user can enter any number of file names for loading, terminating entry of declarations

3 files with an 'x' (or any invalid file name). The facts and templates specified in these files

are loaded onto each of the active processors.

3 Loading of the productions files follows a process similar to that of loading decla-

rations files, except that HvperCLIPS prompts for the files to be loaded to each active

3 processor individually, as follows:

I
Enter rule file names for processor PI ->

I During actual execuition of l[yperCI.PS, the "I" shown in this sample prompt is

rplared with the II) of the processor currently being loaded with productions files. Ily-

per(LIPS does riot protect against the user entering the same productions file into more

F-3

I



I
than one processor, nor does it check that no single production is loaded into more than3 one processor. Parsing of production rules into production files, arid tle subsequent as-

signment of production files to specific processors, is left to the complete discretion of the

user. Any number of file names may be loaded, entry of files again being terminated with

an -x" (or any invalid file name).

The next prompt requests the desired run limit for execution. The user can specify

the niumber of rules to fire before suspending execution, or the user may enter -1 to set

llvperCLIPS to run until no more rules remain to fire or until the program terminates

(whichever occurs first ):

3 Enter run limit (-i for no limit):

U The final two prompts allow setting of the CLIPS watch options for debugging and

I program verification purposes. The prompts appear in the following forn:

3 Enter watch item (lower case):

3 Enter watch-action-value (I-ON, O-OFF):

The user first enters a watch item. which specifies that "rules", "facts", "activations",

3compilations", or "all" be displayed during expert system shell execution. The watch

action value prompt turns the desired watch option ON (1) or OFF (0).

3 The IvyperCLIPtS program terminates after a single execution, requiring that re-

sponses to the entire sequence of prompts described above be reaccomplished for subse-3 quent runs. This limitation is very inconvenient when a large number of declarations files

and productions files must be entered for each execution. The workaround to avoid re-3 typing of prompt responses is to use an executable macro file to initiate HyperCLIPS arid

provide responses to the user prompts.

IFA

I



I
I

F.4 HypcrCLIPS Limitatioris

I HyperCLIPS is designed as a parallel processing research tool. As such, its simple

interface environment is not adequate for expert system application program debugging.

The user is encouraged to debug his expert system application using serial CLIPS Version

4.3 before attempting to process the application using HyperCLIPS.

To achieve processing speedups using HyperCLIPS, two conditions must exist:

I 1. The user's application must lend itself to fortuitous assignment of production rules

to available processors so as to attain some benefit from production parallelism.

2. The user must employ some algorithmic mechanism to recognize dependencies and

3 relationsbhps among the production rules, upon which fortuitous assignment to avail-

able processors depends.

5 In regard to condition 1. ttyperCLIPS can only take advantage of the production paral-

lelism inherent in the productions parsed to its separate processors. Concerning condition

2, 1vperCLIPS offers no algorithmic inter-production dependency recognition mechanisin,

as the burden of assignment of productions to processors is left to the user.

I
I
I
I
I
I
I
I F-5

U



I

I il
Vita

Captain William A. Harding was horn 22 May 1963 in Harvey, Illinois. lie graduated

from high school in Wilhnington, Illinois, in 1981. lie attended Southern Illinois Universitv

- Carbondale, where he received the degree of Bachelor of Arts in Computer Science in May

198,. Upon graduation, he received a regular commission in the United States Air Force

through the Reserve Officer Training Corps program. le served as an Information System

Programs and Analysis Officer with Headquarters Air Force Space Command, Petersoli

AFB, CO, until entering the School of Engineering, Air Force Institute of Tcchnolnv.

Wright-Patterson AFB, Oil, in May 1988.

I
Permanent address: 827S Wold Den Court

Springfield, VA 22153

I
I
I
I
I
I
I
I
I VITA- 1

I



Bibliography

1 . Autor..ated Reasoning 'Fool (ART) Referonce Manual. ART Version 2.0: InferenceU Corporation Publication. April 1986.
2. Barhen. Jacob, Sandeep Gulati, and S. Sitliaramra Iyengar. "The Pebble Crunching

Model for Load Balancing in Concurrent llvpercube Ensemibles." In The Third ('oi-
ferenice on Ilypcrcube ('oncurrenit ('omputers and Applications, Volume 1, pages 189-
199. The Association for Computing Machinery, 1988.

1 3. Brooke, Thomas M. "Cosmic: CLIPS," AI1 Expcrt. pages 71-73 (April 1988S).

-4. '.Aa'bris. Christopher F. .4rtiflcilal 1inttlligcnce and Turbo Pascal. Iloinewood, Illiniis:
.Multiscience Press, Inc, 1987.

5. CLIPS Reference Manual. Version 4.3 of CLIPS; Artificial Intelligence Section, Lyni-
don B. Johnson Space Center. June 1989.

6;. Douglass. Robert J. "A Qualitative Assessment of Parallelism in Expert Systems,"
IEEE Softuart, 2:70--81 (May' 1985).

7. Fanning, iLt Jesse. AFWAL Robotic Air Vehicle (RA\') Project Nieniber. TelephoneI interview. Air Force Wright Aeronautics Laboratory, Wright -Pat terson AF13. 011. 22
November 1989.

8. Flynn., N1. J. "~Very High-Speed Computing Systems." In Procu(dings of the IEELE.Ipages 1901-1909, IEE. December 1966.

. ug.Cliar~w. L. 0C1S0 User 's M~anu--l; - rpartmnn. of C'rnpu.te-r Science, Carno ,gi-
Mellon University, Pittsburgh, PA. July 1981.

10. Forgy, Charles L. "Rete: A Fast Algorithm for the Many Pattern/Many Object3 Pattern Miatch Problem," Artificial Intelligence, 19:17-37 (September 1982).

11. Forgy, Charles L. "Rete: A Fast Match Algorithm," AI Expert, pages 3-1-10 (Jamiilarv
1987).3 12. Graham, J. MI., et al. Alultiple-Function Forwyard-Looking Infrared (FLI) IRobotic Azir
Vehicle (U) Volume III. Technical Report, Texas Instruments Inc, 1988. AFWAL-

TR-87-1109; Public Domain Portion Only.I 13. cGupta, Anoop. Para-1lc!i vm in~ Productior Systems: The Sources and the Erxctedl
Speedup. Technical Report, Carnegie-Mellon University, Pittsburgh, Pennsylvania,

1984. Contract F33615-81-K- 1539.

14, Gupta, Anoop. Parallelism in Production Systems. MS thesis, Carnegie- Mellon Uni-
.versity, Pittsburgh, Pennsylvania, March 1986.I15. Gupta, Anoop and Charles L. Forgy. Measurements on Production Systemis. Tech-
nical Report, Carnegie- Mellon University, Pittsburgh, Penns ylvania, 1983. Contract

F33615-81 -K- 1539.

I BIB-i



m
I

16. Gupta, Anoop and Milind Tambe. "Suitability of Message Passing Computers for
m Implementing Production Systems." In Proceedings of the National Conftrcnc on

Artificial lntdlligenc (To Appear), August 1988.

17. Gupta, Anoop, Milind Tambe, Dirk Kalp, Charles Forgy, and Allen Newell. "Par-
allel Implementation of OPS5 on the Encore Multiprocessor: Results and Analysis,"
International Journal of Parallel Programming, 17(2):95-124 (April 1988).3 18. Hu, David. C++ for Expert Systems. Portland, Oregon: Management Information
Source, Inc., 1989.

19. ltwang, Kai. "Advanced Parallel Processing with Supercomputer Architectures." In
Proceedings of the IEEE, pages 1348-1379, IEEE, October 1987.

20. llwang, Kai and Faye A. Briggs. Computer Architectur and Parallel Proc(sing. New
m 21York: McGraw-Hill, Inc., 1984.

21. iPSC User's Guide. Intel Corporation Publication. April 1986.

22. iPSC/2 User's Guide. Intel Corporation Publication. March 1988.

23. Ishida. Toru and Salvatore J. Stolfo. "Towards the Parallel Execution of Rules in
Production System Programs." In Proceedings of the International Confcrunc on
Parallel Processing, pages 568-575, 1985.

24. Jackson. Victor and Paul Kautz. Class handout distributed in iPSC Concurrent
Programming Workshop. Intel Scientific Computers, 1986.

S2-5. Kelly, Michael A. and Rudolph E. Seviora. "A Multiprocessor Architecture for Pro-
duction System Matching." In Proceedings of the National Conference on Artificial

Intelligence, pages 36-41, 1987.

26. Lamanna, Cpt Catherine A. A Performance Study of the Itylxrcube Architectur'.
MS thesis, Air Force Institute of Technology, Wright-Patterson Air Force Base. Ohio.
June 1988.

27. Luger. George F. and William A. Stubblefield. Artificial Intelligence and the )(.ig

of Expert Systems. Redwood City, California: The Benjamin/Cumnings lPuhlishiig5 Company, Inc., 1989.

2s McNulty, Christa. "Knowledge Engineering for Piloting Expert System." In Proca(d-
ings of the IEEE National Aerospace and Electronics Conference, pages 1326-1330.

IEEE. May 1987.

29. Milnes, Brian. The Production System Machine Project Member. Telephone inter-
view. Department of Computer Science, Carnegie- Mellon University, Pittsburgh, PA.
20 July 1989.

30. Nilsson, N. J. Principles of Artificial Intelligence. Palo Alto, California: Tioga Pub-3 fishing Company, 1980.

31. Norman, Capt Douglass 0. Reasoning in Real-Time for the Pilot As.sociate: An
Examination of Model Based Approach to Reasoning in Real-Time for Artificial In-

telligence Systems using a Distributed Architecture. MS thesis, Air Force Institute of
Technology, Wright-Patterson Air Force Base, Ohio, December 1985.

N
BIB-2I



32. Oflazer, Kemal. "Partitioning in Parallel Processing of Production Systems," IEEE,
pages 92- 100 ( i9F-1II33. Popolizio, John J. "CLIPS:.NASA's Cosmic She'l,- Artificial Intclligrwc
1:743-747 (August 1988).

34. Quinn. Michael J. Dcsignirig Efficictt Algorithms for Paralld ('ompuhrs. New York:
McGraw-Hill, Inc., 1987.

3!5. Riley, Gary. Implcmentation of an Expc-t Systerm Shell on a Parrilid Compitcr.

Technical Report, NASA/Johnson Space Center, 1988. Houston, Texas.
36,. Schildt, Herbert. Artificial Intelligence Using C. Berklev, California: McGraw-Hill,3 Inc., 1987.

37. Shakley. Capt Donald J. Paratlcl Artificial Intclligcnc Sf arch Tcchniqus for I6 al-
Time Applications. MS thesis, Air Force Institute of Technology, 'Wright- Pat tersonI Air Force Base, Ohio, December 1987.

38. Winston, Patrick Henry and Berthold Klaus Paul Horn. LISP. Reading, Mas-3 sachusetts: Addisoni-Wesley Publishing Company, 1984.

IM



CURITY CLASSiFICATION OF TH-IS PAGE

REPOT DCUMNTATON AGEForm Approved
REPOT DCUMETATON PGE0MB No. 0704-0188

REPORT SEC,RTY CLASS:I)CAT ON lb RESTRICTIVE MARKINGS
Unclassifijed

ISECURITY CLASSIFiCATION AUTHORITY 3 DISTRIBUTION / AVAILABILITY OF REPORT
'A Approved for public release; distribution

7DFCLASSF iCATiON, DOWNGRADiNG SCHEDULE uni imi r.d

I AFIT/ENA
SADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, Stae, and ZIP Code)

Air Frce Institute of Technology

4righrL-Pattkfsun AFB, Ohio 45433
NAME OF FUNDING SPONSORING b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDNTIF'CATION NUMBER

ORGANIZATION (f applicable)

NF Wright Aeronautics Labs jAFWAL /AFAL
.. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

ir Force Wright Aeronautics Labs PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO INO ACCESSION NO

;right-Patterson AFB, Ohio 45433

GTITLE (nclude Security Classification)

ypercube Expert System Shell - Applying Production Parallelism UNCLASSIFIED

PERSONAL AUTHOR(S)

illiam A. Harding Capt_ USAF

a. TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT
MS Thesis FROM TO 1989 December 131

SUPPLEMENTARY NOTATION

COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Expert System Rete Algorithm

09 02 Parallel Processing Hypercube
Pattern Matching Pioduction Parallelism

. ABSTRACT (Continue on reverse if necessary and identify by block number)

rhis research investigation proposes a hypercube design which supports efficient symbolic
computing to permit real-time control of an air vehicle by an expert system. Design efforts
re aimed at alleviating common expert system bottlenecks, such as the inefficiency of
ymbolic programming languages like Lisp and the disproportionate amount of computation time

commonly spent in the match phase of the expert system match-select-act cycle. Faster
rocessing of Robotic Air Vehicle (RAV) expert system software is approached through I) fas
roduction matching using the state-saving Rete match algorithm, 2) efficient shell

implementation using the C-Programming Language and 3) parallel processing of the RAV using
ultiple copies of a serial expert system shell. In this investigation, the serial
-Lanuage Integrated Production System (CLIPS) shell is modified to execute in parallel on
the iPSC/2 Hypercube. Speedups achieved using this architecture are quantified through
theoretical timing analysis, and comparison with serial architecture performance results,

ith earlier designs' performance results, with best case results and with goal performance.

'0 DISTRiBU ION/ AVAILABILITY OF ABSTRACT 121 ABSTRACT SECURITY CLASSIFICATION _

C]UNCLASSIFIEDIUNLIMITED C3 SAME AS RPT C1 DTIC USERS UNCLASSIFIED
NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

lr. Gary L. Lamont 513-255-3450 , AFIT/ENG
DD Form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE

I



TLnED

qwmw 9- Il2 %---

DTIC


